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Abstract: We propose some methods for the construction of large quasi-orthogonal matrices and generalized 
rotations that may be used in applications in data communications and image processing. We use certain 
combinations of constructions by blocks similar to the one used by Sylvester to build Hadamard matrices. 
The orthogonal designs related with the matrix representations of the complex numbers, the quaternions, 
and the octonions are used in our construction procedures.
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1 Introduction
Invertible matrices such that their inverse is easy to construct are very important in Linear Algebra and its 
many applications. Among such matrices the orthogonal matrices are certainly the most useful due to their 
nice algebraic and geometric properties. There are several generalizations of the orthogonal matrices de-
scribed with names such as quasi-orthogonal matrices, almost orthogonal matrices, and generalized rota-
tions. For example, matrices A such that AAT = wI, where I is the identity matrix and w is a scalar, that 
usually depends on the size of A, are often called quasi-orthogonal matrices. A well-known class of such ma-
trices is the set of Hadamard matrices. These are matrices whose entries are 1 or -1, and that are the subject of 
extensive research. See [10] and the references therein.

In some applications it is important to use large matrices whose entries take only a small number of 
distinct values and the geometric properties that come from AAT = wI may not be required. This happens in 
some applications in image and signal processing and data communication. See [1], [2], [11], and [12].

In this paper we present some simple procedures to construct large invertible matrices whose inverses are 
very easy to obtain without any arithmetical computations, with just transpositions of blocks and changes of 
signs. For example, block matrices of the form

R =
[
A −B
B A

]
,

that satisfy [
A −B
B A

][
A B
−B A

]
= λI, (1.1)

where λ is a nonzero scalar and I denotes the identitymatrix of the appropriate size. Note that the inverse of R
is a scalar multiple of the block-transpose of R. If the blocks A and B are symmetric then the block-transpose
coincides with the transpose.

Some simple orthogonal designs appear in a natural way in our constructions. An orthogonal design of
order n and type (c1, c2, . . . , ck) is a square matrix C of order n with entries in the set {0, ±x1, ±x2, . . . , ±xk},
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where the xj are commuting variables, that satis�es

C CT =

 k∑
j=1

cjx2j

 In .

The study of orthogonal designs was initiated by Radon and Hurwitz around 1922 and is an active area of
research. See [3], [4], [5], [6], [7], [8], and [9]. In this paper we use the orthogonal designs associated with the
matrix representations of the complex numbers and the quaternions, and also an orthogonal design of order
8. We do not construct any new orthogonal designs.

The complex numbers can be represented by 2 × 2 matrices of real numbers. The starting idea behind
our constructions is to replace the real numbers in the matrices that represent the complex numbers with
some square matrices that satisfy certain conditions. This is done in Section 2. We use a simple 2 × 2 block
construction whose iteration allows us to obtain large matrices A and B that satisfy (1.1). In Section 3 we
introduce some simple sequences of matrices of increasing size that can be used as building blocks for the
large matrices. The entries of the building blocks take only a small number of di�erent values. In Section 4
we use the matrix representations of the quaternions to obtain other block constructions, this time with 4 ×4
block matrices. We also use an orthogonal design to obtain an 8 × 8 block construction. Our methods may be
used to obtain some sequences of Hadamard matrices of increasing size.

2 Quasi-orthogonal matrices
In this section we de�ne some basic concepts, introduce the notation that will be used in this paper, and
obtain some results about the construction of quasi-orthogonal matrices.

We denote byMn the set of n × nmatrices with complex entries and by In the identity matrix inMn . The
functions c and c∗ are de�ned by the block constructions

c(A, B) =
[
A −B
B A

]
, c∗(A, B) =

[
A B
−B A

]
, (2.1)

where A and B are square matrices of the same size. They are functions fromMn ×Mn toM2n for any positive
integer n and c∗(A, B) = c(A, −B). Note that

c(A, B)c(C, D) = c(AC − BD, AD + BC),

and
c(A, B)c∗(A, B) = c(A2 + B2, BA − AB). (2.2)

De�nition. Amatrix R inM2n is quasi-orthogonal if and only if R = c(A, B) for some matrices A and B in
Mn and c(A, B)c∗(A, B) = λI2n for some nonzero number λ. A quasi-orthogonal matrix R = c(A, B) for which
λ = 1 is called generalized rotation.

Using (2.2) we obtain immediately the following characterization of quasi-orthogonal matrices.

Lemma 2.1. Amatrix R = c(A, B) inM2n is quasi-orthogonal if and only if A and B commute and A2+B2 = λIn
for some nonzero scalar λ.

If c(A, B) and c(C, D) are quasi-orthogonal and A, B, C, D commute, then it is easy to see that c(A, B) and
c(C, D) commute and the product c(A, B)c(C, D) is quasi-orthogonal.

We de�ne another pair of block constructions as follows. If A and B are square matrices of the same size
de�ne

s(A, B) =
[
A B
B A

]
, s∗(A, B) =

[
A −B
−B A

]
. (2.3)
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Themaps s and s∗ send each pair of matrices inMn ×Mn to a block-symmetric matrix inM2n, for any positive
integer n.

Multiplication of a matrix T ∈ M2n on the right by the matrix s(0, In) permutes the columns of n × n
blocks of T, and multiplication on the left permutes the rows of n × n blocks of T. Then we have

s(0, In)c(A, B)s(0, In) = c∗(A, B), A, B ∈Mn ,

and therefore c∗(A, B) is similar to c(A, B), since s(0, In)2 = I2n. As a consequence, c(A, B) and c∗(A, B)
have the same determinant and the same characteristic polynomial. Therefore, if c(A, B)c∗(A, B) = λI2n then
det(c(A, B))2 = λ.

Lemma 2.2. Let A and B be elements ofMn such that A and B commute and A2+B2 = λIn where λ is a nonzero
scalar. Then s(A, B) and s∗(A, B) commute and s(A, B)2 + s∗(A, B)2 = 2λI2n.

Proof: Just note that s(A, B)2 = s(A2 + B2, 2AB) and s∗(A, B)2 = s(A2 + B2, −2AB). �
From Lemmas 2.1 and 2.2 we obtain immediately the following result.

Theorem 2.1. Let c(A, B) ∈M2n be quasi-orthogonal. Then c(s(A, B), s∗(A, B)) is a quasi-orthogonal element
ofM4n.

Let A and B be in Mn. Using the maps s and s∗ we de�ne another construction by blocks
as follows. Let σ0(A, B) = (A, B) and σ1(A, B) = (s(A, B), s∗(A, B)). For m ≥ 1 de�ne
σm(A, B) = (s(σm−1(A, B)), s∗(σm−1(A, B))). Note that σm(A, B) ∈ Mn2m × Mn2m . We write σm(A, B) =
(σm,1(A, B), σm,2(A, B)). Let us note that σm,1(A, B) and σm,2(A, B) are block matrices and all of their blocks
are in {A, −A, B, −B}.

Using Lemma 2.2 repeatedly and Lemma 2.1 we obtain the following theorem.

Theorem 2.2. Let A and B be elements of Mn such that A and B commute and A2 + B2 = λIn, where λ ≠ 0.
Then, for every nonnegative integer m the matrices σm,1(A, B) and σm,2(A, B) commute and satisfy

(σm,1(A, B))2 + (σm,2(A, B))2 = 2mλIn2m ,

and therefore c(σm(A, B)) is a quasi-orthogonal element of Mn2m+1 constructed with blocks from the set
{A, −A, B, −B}.

We say that A and B are the building blocks of the sequence of quasi-orthogonal matrices c(σm(A, B)).
If c(A, B) is quasi-orthogonal and A and B are symmetric then it is clear that c∗(A, B) is equal to the

transpose of c(A, B) and therefore c(A, B) is in fact a scalar multiple of an orthogonal matrix.
If A and B are symmetric elements ofMn then it is obvious that s(A, B) and s∗(A, B) are also symmetric.

Therefore both components of σm(A, B) are also symmetric for every m ≥ 0, since σm(A, B) is constructed by
repeated application of the block constructions s and s∗.

From the previous observations we obtain the following result.

Theorem 2.3. Let A and B be symmetric elements ofMn such that A and B commute and A2 +B2 = λIn, where
λ = ̸ 0. Then, for every nonnegative integer m the matrices σm,1(A, B) and σm,2(A, B) are symmetric and they
commute and satisfy

(σm,1(A, B))2 + (σm,2(A, B))2 = 2mλIn2m ,

and therefore c(σm(A, B)) is quasi-orthogonal and (
√
2)−m(

√
λ)−1c(σm(A, B)) is an orthogonal generalized ro-

tation and it is inMn2m+1 .
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3 Examples of sequences of building blocks
If A ∈ Mn satis�es A2 = µIn we can take B = A in Theorem 2.2 and then all the n × n blocks in the matrices
c(σm(A, A)) are either A or −A.

For n ≥ 1 let Un ∈Mn be the matrix that has all its entries equal to 1. Now de�ne

Vn =
2
nUn − In . (3.1)

The entries in the diagonal of Vn are all equal to (2− n)/n and all the other entries are equal to 2/n. Therefore
the sum of the entries in every row and every column is equal to 1.

Since Un is symmetric, so is Vn. A simple computation shows that V2
n = In and therefore Vn is orthogonal

and symmetric.
We also have

det(Vn) = (−1)n+1, det(tIn − Vn) = (t − 1)(t + 1)n−1, (3.2)

and
det((

√
2)−m−1c(σm(Vn , Vn))) = 1, m ≥ 0, n ≥ 1. (3.3)

Since Vn is symmetric for every n, by Theorem 2.3, we see that the matrices c(σm(Vn , Vn)) are scalar
multiples of orthogonal matrices for every n ≥ 1 and m ≥ 0.

The matrix V4 is interesting because

2V4 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , (3.4)

and therefore all the entries in the matrices c(σm(2V4, 2V4)) are 1 or -1 and

c(σm(2V4, 2V4))c∗(σm(2V4, 2V4)) = 4 ∗ 2m+1I4∗2m+1 , (3.5)

and since V4 is symmetric c(σm(2V4, 2V4)) is a scalar multiple of an orthogonal matrix and there-
fore it is a Hadamard matrix. For example, (1/8)c(σ3(2V4, 2V4)) is an orthogonal element of M64, and
(
√
2)−2m+1c(σm(2V4, 2V4)) is an orthogonal element of M2m+3 . Note that 2V(4) is a circulant symmetric ma-

trix.
If n ≠ 4 and n = ̸ 2 then the entries of the matrices c(σm(Vn , Vn)) take the four values 2/n, −2/n, (2 −

n)/n, (n − 2)/n, for every m ≥ 0. If n = 2 the entries take the values 0, 1, −1.
We consider now another sequence of building blocks. Let

Yn =
1
nUn , Xn = In − Yn , n ≥ 1, (3.6)

where Un is as previously de�ned. The matrices Xn and Yn are symmetric and singular and satisfy

X2n = Xn , Y2n = Yn , Xn + Yn = In , XnYn = 0, n ≥ 1. (3.7)

Therefore Xn and Yn commute and X2n + Y2n = In. By Theorem 2.3 the matrices c(σm(Xn , Yn)) are quasi-
orthogonal and are scalar multiples of orthogonal matrices for n ≥ 1 and m ≥ 0. Another property of these
matrices is that

det((
√
2)−mc(σm(Xn , Yn))) = 1, m ≥ 0, n ≥ 1. (3.8)

The entries of c(σm(Xn , Yn)) take four distinct values, except when n = 2, in that case the values of the
entries are 1/2 and −1/2. For m ≥ 0 the matrix c(σm(2X2, 2Y2)) is a Hadamard matrix of size 2m+2.
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4 Other block constructions
The quaternions can be represented by 4 × 4matrices of real numbers of the form

q =


a −b −c −d
b a d −c
c −d a b
d c −b a

 .

The matrix that represents the conjugate quaternion q∗ is obtained by changing the sign of b, c, d. The prod-
uct qq∗ is equal to (a2 + b2 + c2 + d2)I4 and represents the square of the norm of q.

We de�ne the block constructions t and t∗ as follows. If A, B, C, D are inMn de�ne

t(A, B, C, D) =


A −B −C −D
B A D −C
C −D A B
D C −B A

 ,

t∗(A, B, C, D) =


A B C D
−B A −D C
−C D A −B
−D −C B A

 . (4.1)

Notice that if A, B, C, D are symmetric then t∗(A, B, C, D) is the transpose of t(A, B, C, D).
From the properties of the matrix representation of the quaternions we obtain immediately the following

result.

Lemma 4.1. If the matrices A, B, C, D are inMn and commute with each other then

t(A, B, C, D)t∗(A, B, C, D) = (A2 + B2 + C2 + D2)⊗ I4,

where⊗ denotes the Kronecker product.

From the previous Lemma we get the following theorem.

Theorem 4.1. If A, B, C, D are inMn, commute with each other and satisfy A2 +B2 +C2 +D2 = λIn, with λ = ̸ 0,
then t(A, B, C, D) is an element ofM4n and satis�es

t(A, B, C, D)t∗(A, B, C, D) = λI4n . (4.2)

It is easy to construct sets {A, B, C, D} that satisfy A2+B2+C2+D2 = λIn, with λ = ̸ 0, and such that no proper
subset of {A, B, C, D} satis�es the condition that the sum of the square of its elements is a nonzero multiple
of the identity.

Le us note that equation (4.2) is similar to c(A, B)c∗(A, B) = λI2n, which is the equation used to de�ne
quasi-orthogonal matrices. The matrix t(A, B, C, D) can be written as

t(A, B, C, D) =
[
c(A, B) −c∗(C, D)
c(C, D) c∗(A, B)

]
. (4.3)

If we take C = 0 and D = 0 in (4.3) and substitute in (4.2) we see that (4.2) becomes the equation
c(A, B)c∗(A, B) = λI2n written twice. Therefore if c(A, B) is quasi-orthogonal then (4.2) is satis�ed with C = 0
and D = 0. Therefore we can use (4.2) to extend the concept of quasi-orthogonal matrix. We use the same
name and we say that t(A, B, C, D) is quasi-orthogonal if it satis�es (4.2) with some λ ≠ 0.

Using Theorem 4.1 and the properties of the block constructions s ans s∗ it is easy to prove the following
result.



112 | Luis Verde-Star

Theorem 4.2. LetA, B, C, D be elements ofMn that commutewith each other and satisfyA2+B2+C2+D2 = λIn,
with λ ≠ 0. De�ne

E1 := s(s(A, B), s∗(C, D)), E2 := s∗(s(A, B), s∗(C, D)),

E3 = s(s(C, D), s∗(A, B)), E4 := s∗(s(C, D), s∗(A, B)). (4.4)

Then E1, E2, E3, E4 commute with each other and satisfy

E21 + E22 + E23 + E24 = 4λI4n ,

and
t(E1, E2, E3, E4) t∗(E1, E2, E3, E4) = 4λI16 n . (4.5)

The construction that produces the 4-tuple (E1, E2, E3, E4) starting with (A, B, C, D) can be iterated, in a way
analogous to the de�nition of the map σm in Section 2. We de�ne γ(A, B, C, D) = (E1, E2, E3, E4), with the Ej
de�ned in (4.4), and then de�ne γ0(A, B, C, D) = (A, B, C, D), γ1(A, B, C, D) = γ(A, B, C, D), and for m ≥ 1
we de�ne γm(A, B, C, D) = γ(γm−1(A, B, C, D)). Note that γ preserves the commutativity of its arguments and
the property that the sum of the squares of its arguments is a nonzero multiple of the identity matrix.

Corollary 4.1. Let A, B, C, D be as in the previous theorem and let m ≥ 0. Then t(γm(A, B, C, D)) is quasi-
orthogonal and

t(γm(A, B, C, D)) t∗(γm(A, B, C, D)) = 4m λIn∗4m+1 . (4.6)

If A, B, C, D are symmetric then t(γm(A, B, C, D)) is a scalar multiple of an orthogonal matrix.

There are other block constructions that can be used instead of t(A, B, C, D). For example,
A −B −C −D
B A −D C
C D A −B
D −C B A

 ,


A B C D
B −A D −C
C −D −A B
D C −B −A

 . (4.7)

The �rst one corresponds to another matrix representation of the quaternions and is an orthogonal design.
Let q(A, B, C, D) denote the �rst block matrix in (4.7) and let q∗(A, B, C, D) = q(A, −B, −C, −D). We com-

bine t, t∗, q, q∗ to obtain an 8 × 8 block matrix as follows. De�ne

m(A, B, C, D, E, F, G, H) =
[
q(A, B, C, D) −t∗(E, F, G, H)
t(E, F, G, H) q∗(A, B, C, D)

]
, (4.8)

and let m∗(A, B, C, D, E, F, G, H) = m(A, −B, −C, −D, −E, −F, −G, −H).
The proof of the following result is a straightforward computation.

Theorem 4.3. If the matrices A, B, C, D, E, F, G, H ∈Mn commute with each other and satisfy A2 + B2 + C2 +
D2 + E2 + F2 + G2 + H2 = λIn, with λ = ̸ 0, then

m(A, B, C, D, E, F, G, H)m∗(A, B, C, D, E, F, G, H) = λI8n . (4.9)

Note that m(A, B, C, D, E, F, G, H) + m∗(A, B, C, D, E, F, G, H) = 2A ⊗ I8, where ⊗ denotes the Kronecker
product.

Remark. The block constructionm(A, B, C, D, E, F, G, H) is related with an 8 ×8 orthogonal design, but
it is not connected with the multiplication of the octonions, which is non-associative and therefore doesn’t
have a matrix representation.

If A, B, C, D, E, F, G, H ∈Mn we de�ne the 8 block matrices

K1 = s(s(s(A, B), s∗(C, D)), s∗(s(E, F), s∗(G, H))),

K2 = s∗(s(s(A, B), s∗(C, D)), s∗(s(E, F), s∗(G, H))),
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K3 = s(s∗(s(A, B), s∗(C, D)), s(s(E, F), s∗(G, H))),

K4 = s∗(s∗(s(A, B), s∗(C, D)), s(s(E, F), s∗(G, H))),

K5 = s(s(s∗(A, B), s(C, D)), s(s∗(E, F), s(G, H))),

K6 = s∗(s(s∗(A, B), s(C, D)), s(s∗(E, F), s(G, H))),

K7 = s(s∗(s∗(A, B), s(C, D)), s∗(s∗(E, F), s(G, H))),

K8 = s∗(s∗(s∗(A, B), s(C, D)), s∗(s∗(E, F), s(G, H))).

Themap δ that sends (A, B, C, D, E, F, G, H) to (K1, K2, K3, K4, K5, K6, K7, K8) preserves commutativity and

8∑
j=1

K2j = 8(A2 + B2 + C2 + D2 + E2 + F2 + G2 + H2).

In the same way that we de�ned the iterates of σ and γ we can de�ne the iterates of δ, denoted by δk, for
k ≥ 0.

Corollary 4.2. Let A, B, C, D, E, F, G, H be as in the previous theorem and let k ≥ 0. Then we have

m(δk(A, B, C, D, E, F, G, H))m∗(δk(A, B, C, D, E, F, G, H)) = 8kλIn∗8k+1 . (4.10)

It is clear that we can use the building blocks introduced in Section 3 to construct several kinds of large
quasi-orthogonal matrices. In particular, we can construct some Hadamard matrices and some generalized
Hadamard matrices involving complex numbers and quaternions.
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