Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access December 13, 2019

Updating a map of sufficient conditions for the real nonnegative inverse eigenvalue problem

  • C. Marijuán EMAIL logo , M. Pisonero and Ricardo L. Soto
From the journal Special Matrices

Abstract

The real nonnegative inverse eigenvalue problem (RNIEP) asks for necessary and sufficient conditions in order that a list of real numbers be the spectrum of a nonnegative real matrix. A number of sufficient conditions for the existence of such a matrix are known. The authors gave in [11] a map of sufficient conditions establishing inclusion relations or independency relations between them. Since then new sufficient conditions for the RNIEP have appeared. In this paper we complete and update the map given in [11].

JEL Classification: 15A29; 15A18; 15B51

References

[1] A. Borobia, On the Nonnegative Eigenvalue Problem, Linear Algebra Appl. 223-224 (1995) 131-140.10.1016/0024-3795(94)00343-CSearch in Google Scholar

[2] A. Borobia, J. Moro, R. L. Soto, Negativity compensation in the nonnegative inverse eigenvalue problem, Linear Algebra Appl. 393 (2004) 73-89.10.1016/j.laa.2003.10.023Search in Google Scholar

[3] A. Borobia, J. Moro, R. L. Soto, A unified view on compensation criteria in the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 428 (2008) 2574-2584.10.1016/j.laa.2007.11.031Search in Google Scholar

[4] A. Brauer, Limits for the characteristic roots of a matrix, IV: Applications to stochastic matrices, Duke Math. J. 19 (1952) 75-91.10.1215/S0012-7094-52-01910-8Search in Google Scholar

[5] R. Ellard, H. Šmigoc, Connecting sufficient conditions for the symmetric nonnegative inverse eigenvalue problem, Linear Algebra Appl. 498 (2016), 521-552.10.1016/j.laa.2015.10.035Search in Google Scholar

[6] W. Guo, Eigenvalues of nonnegative matrices, Linear Algebra Appl. 266 (1997) 261-270.10.1016/S0024-3795(96)00007-9Search in Google Scholar

[7] C. R. Johnson, Row stochastic matrices similar to doubly stochastic matrices, Linear Multilinear Algebra 10 (1981) 113-130.10.1080/03081088108817402Search in Google Scholar

[8] R. Kellogg, Matrices similar to a positive or essentially positive matrix, Linear Algebra Appl. 4 (1971) 191-204.10.1016/0024-3795(71)90015-2Search in Google Scholar

[9] T. J. Laffey and E. Meehan, A characterization of trace zero nonnegative 5 × 5 matrices, Linear Algebra Appl. 302/303 (1999) 295-302.10.1016/S0024-3795(99)00099-3Search in Google Scholar

[10] C. Marijuán, M. Pisonero, On Sufficient Conditions for the RNIEP and their Margins of Realizability, Electron. Notes Discrete Math. 46 (2014) 201-208.10.1016/j.endm.2014.08.027Search in Google Scholar

[11] C. Marijuán, M. Pisonero, R. L. Soto, A map of sufficient conditions for the real nonnegative inverse eigenvalue problem, Linear Algebra Appl. 426 (2007) 690-705.10.1016/j.laa.2007.05.046Search in Google Scholar

[12] H. Perfect, Methods of constructing certain stochastic matrices II, Duke Math.J.22 (1955) 305-311.10.1215/S0012-7094-55-02232-8Search in Google Scholar

[13] R. L. Soto, Existence and construction of nonnegative matrices with prescribed spectrum, Linear Algebra Appl. 369 (2003) 169-184.10.1016/S0024-3795(02)00731-0Search in Google Scholar

[14] R. L. Soto, A family of realizability criteria for the real and symmetric nonnegative inverse eigenvalue problem, Numer. Linear Algebra Appl. 20 (2013) 336-348.10.1002/nla.835Search in Google Scholar

[15] R. L. Soto, O. Rojo, Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem, Linear Algebra Appl. 416 (2006) 844-856.10.1016/j.laa.2005.12.026Search in Google Scholar

[16] R. L. Soto, O. Rojo, C. B. Manzaneda, On Nonnegative Realization of Partitioned Spectra, Electron. J. Linear Algebra 22 (2011) 557-572.10.13001/1081-3810.1457Search in Google Scholar

Received: 2019-07-29
Accepted: 2019-11-28
Published Online: 2019-12-13

© 2019 C. Marijuán et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 3.10.2023 from https://www.degruyter.com/document/doi/10.1515/spma-2019-0018/html
Scroll to top button