Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag October 1, 2016

Investigating dynamic measurement applications through modelling and simulation

Untersuchung dynamischer Messungen durch Modellierung und Simulation
  • Trevor J. Esward

    Trevor Esward joined NPL in 1995 following a Ph D in the ultrasonic characterisation of inhomogeneous materials at the University of Surrey. He graduated from Sheffield City Polytechnic in 1992 with a First in Engineering Physics. His recent research includes signal processing for metrology applications, including the production of a good practice guide on this topic, metrology of dynamic measurement systems, uncertainty analysis and design of experiments, simulation of measuring systems, parallel processing using distributed computing networks, and the mathematics required to support nanotechnology applications in metrology. He is also experienced in continuous modelling, in particular the application of finite element and boundary element methods to the solution of wave propagation problems. In addition to his work at NPL he has taught clinical ultrasound for the M Sc in medical physics at the University of Surrey.

    National Physical Laboratory – Mathematics and Modelling, Hampton Road, Teddington, TW11 0LW, UK, T: +44 20 8943 6883

    EMAIL logo
From the journal tm - Technisches Messen

Abstract

Dynamic measurement challenges are ubiquitous in metrology and can be found in many measurement applications that are not conventionally regarded as dynamic. We present four recent examples of work at the UK's National Physical Laboratory that demonstrate how modelling and simulation can contribute to improved understanding of dynamic measurement tasks. The examples are (i) a software simulation of a lock-in amplifier, (ii) a simulation of a sensor network in which one of the sensors has insufficient bandwidth for the measurement task and Kalman filter based data fusion is used to aggregate the sensor outputs, (iii) a study of performance imperfections in a clock embedded in a wireless sensor node using a Monte Carlo based method for simulating counting errors, and (iv) a simulation of wave propagation in a shock tube in which the lattice Boltzmann method was used to study non-ideal behaviour of the shock tube. It is shown that simulation (both physically based and phenomenological) is useful in designing measuring systems and identifying and quantifying measurement uncertainties and that the development of simulation software requires the developer to have a clear understanding of the measuring system of interest.

Zusammenfassung

Die Herausforderungen, die sich bei dynamischen Messungen ergeben, sind allgegenwärtig in der Metrologie und finden sich genauso in Anwendungen, die im Allgemeinen nicht als dynamisch aufgefasst werden. Wir präsentieren vier aktuelle Beispiele aus der Arbeit des National Physical Laboratory (Vereinigtes Königreich), um zu demonstrieren, wie Modellierung und Simulation zu einem besseren Verständnis dynamischer Messungen beitragen können. Die Beispiele sind eine Software zur Simulation eines Lock-in-Verstärkers; die Simulation eines Sensornetzwerks, in welchem einer der Sensoren eine für die Messaufgabe unzureichende Bandbreite aufweist und ein Kalman-Filter-basierender Ansatz zur Datenfusion angewandt wird, um die Sensorantworten zusammenzufassen; eine Untersuchung der Performanceprobleme einer Uhr, welche in einem kabellosen Sensorknoten integriert ist, basierend auf Monte-Carlo-Simulationen von Zählfehlern; und als Viertes eine Simulation einer Wellenfortpflanzung in einem Stoßrohr, bei welcher die sogenannte Lattice-Boltzmann-Methode angewendet wurde, um das nicht-ideale Verhalten des Stoßrohrs zu untersuchen. Es wird gezeigt, dass Simulationen (sowohl physikalisch basiert als auch phänomenologisch) hilfreich sind für das Design des Messsystems und zur Identifikation und Quantifizierung von Messunsicherheiten, und es wird dargelegt, dass die Entwicklung von Simulationssoftware voraussetzt, dass der Entwickler ein klares Verständnis des untersuchten Messsystems hat.

About the author

Trevor J. Esward

Trevor Esward joined NPL in 1995 following a Ph D in the ultrasonic characterisation of inhomogeneous materials at the University of Surrey. He graduated from Sheffield City Polytechnic in 1992 with a First in Engineering Physics. His recent research includes signal processing for metrology applications, including the production of a good practice guide on this topic, metrology of dynamic measurement systems, uncertainty analysis and design of experiments, simulation of measuring systems, parallel processing using distributed computing networks, and the mathematics required to support nanotechnology applications in metrology. He is also experienced in continuous modelling, in particular the application of finite element and boundary element methods to the solution of wave propagation problems. In addition to his work at NPL he has taught clinical ultrasound for the M Sc in medical physics at the University of Surrey.

National Physical Laboratory – Mathematics and Modelling, Hampton Road, Teddington, TW11 0LW, UK, T: +44 20 8943 6883

Acknowledgement

Listed here are present and former NPL colleagues who assisted with the work described in this paper: Clare Matthews, Peter Harris, Ian Smith, Michael Collett, Paul Clarkson, Keith Lines, Peter Whibberley, Andrew Smith, Nadia Smith, Hong Duc Minh, Femi Onakunle.

The dynamic pressure work described was carried out as part of EURAMET's European Metrology Research Programme (EMRP), which is jointly funded by the EMRP participating countries within EURAMET and the European Union. Other activities were funded as part of the UK's National Measurement System.

Received: 2015-12-23
Revised: 2016-1-5
Accepted: 2016-1-7
Published Online: 2016-10-1
Published in Print: 2016-10-28

©2016 Walter de Gruyter Berlin/Boston

Downloaded on 22.2.2024 from https://www.degruyter.com/document/doi/10.1515/teme-2015-0128/html
Scroll to top button