Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag January 5, 2017

Measurement uncertainty of non-incremental, non-contact, in-situ shape measurements

Messunsicherheitsuntersuchungen zur nichtinkrementellen, berührungslosen, In-Situ-Formmessung
Micha Sebastian Schuster

Micha Schuster is studying Mechatronics at the TU Dresden since 2012 with the majors measurement technology, robotics and simulation technology. He was awarded the best student paper award at the 18. VDI/ITG Fachtagung Sensoren und Messsysteme in Nuremberg 2016.

Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik; Institut für Grundlagen der Elektrotechnik und Elektronik, Professur für Mess- und Sensorsystemtechnik, Dresden, Germany

, Robert Kuschmierz

Robert Kuschmierz is member of VDI, DPG and SPIE. He was awarded a Precision Measurement Award of Meas. Sci. Technol. 2015 as well as the best student paper award at the 18. VDI/ITG Fachtagung Sensoren und Messsysteme in Nuremberg 2016. He has been working at the Fraunhofer Institute for Non-destructive Testing. Since 2012 he is working at the Laboratory of Measurement and Sensor System Technique and is heading the surface metrology group since 2016.

Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik; Institut für Grundlagen der Elektrotechnik und Elektronik, Professur für Mess- und Sensorsystemtechnik, Dresden, Germany

EMAIL logo
and Jürgen Czarske

Jürgen Czarske (Fellow EOS, OSA, SPIE and Senior IEEE) holds a Ph.D. from Leibniz University Hannover. His awards include a Precision Measurement Award of MST 2015, an ASME Best Paper Award 2011, a Berthold Leibinger Innovation Prize 2008 and the Measurement Technique Prize of AHMT 1996. Jürgen Czarske has held positions at Siemens AG (Munich) and LZH (private research institute, Hannover), where he was head of the department of measurement technique. From 1996 until 2001 he was temporally visiting scholar in Japan and USA. In 2003 he has earned his venia legendi. In 2004 he was appointed Chair Professor and Head of the Laboratory of Measurement and Sensor System Technique, TU Dresden, Germany. In 2014 he has won a Reinhart Koselleck award of DFG for highly innovative research. In 2016 he was appointed Director of the Institute of Fundamentals of Electrical Engineering and Electronics. He has published over 150 peer-reviewed journal papers and has transferred several patents to industry.

Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik; Institut für Grundlagen der Elektrotechnik und Elektronik, Professur für Mess- und Sensorsystemtechnik, Dresden, Germany

From the journal tm - Technisches Messen

Abstract

Optical measurement systems work fast and non-contact and can achieve sub-micron precision. Thus they appear to be well suited for in-situ shape measurement of fast rotating objects such as cutting processes in metal working lathes. Most optical measurement systems, however, allow an axial position measurement only. In order to retrieve the shape of the object from a distance measurement, the distance between the sensor and the centre of the object has to be known. Otherwise, deviations of this distance, for instance due to temperature effects or vibrations, will result in a measurement deviation. In order to allow an absolute shape measurement, which is independent of the sensor position, the mean radius of the rotating object can be retrieved from the object's circumferential velocity. The laser Doppler distance sensor with phase evaluation (P-LDD sensor) allows a simultaneous velocity and distance measurement with high temporal resolution. Thus, the P-LDD sensor allows to measure the mean radius as well as the spatially resolved deviation of the radius independently of the sensor position. In order to quantify the achievable measurement uncertainty, and especially the influence of the temperature the measurement uncertainty budget is derived and considers random as well as systematic errors. It is shown that the P-LDD sensor allows an absolute, three-dimensional shape measurement of fast rotating objects with sub-micron uncertainty. The systematic measurement uncertainty of the absolute shape due to the temperature amounts to only 200 nm/K. Thus the P-LDD sensor is not dependent on temperature-controlled laboratories but can be employed directly in the production process (in-situ or in-process).

Zusammenfassung

Zur In-Situ-Formvermessung schnell rotierender Werkstücke, wie sie beispielsweise bei einem Drehprozess in Werkzeugmaschinen vorliegen, sind Lasermesssysteme prädestiniert. Die meisten dieser Messsysteme beruhen dabei einzig auf einer Messung des Abstands zwischen Messobjekt und Sensor. Um daraus den Radius des Messobjekts bestimmen zu können, muss der Abstand zwischen Sensor und Rotationsachse des Messobjekts bekannt sein. Andernfalls wirkt sich eine Änderung dieses Abstands, die z. B. durch eine Änderung der Umgebungstemperatur hervorgerufen werden kann, direkt auf das Messergebnis aus und verursacht systematische Messabweichungen. Um eine Messung des Radius unabhängig vom Arbeitsabstand durchzuführen, kann der Werkstückradius aus einer Messung der Oberflächengeschwindigkeit des rotierenden Messobjekts abgeleitet werden. Der phasenauswertende Laser-Doppler-Distanzsensor (P-LDD-Sensor) ermöglicht eine gleichzeitige, zeitaufgelöste Messung der Oberflächengeschwindigkeit und der Position. Somit ist der P-LDD-Sensor in der Lage, den mittleren Radius des Messobjekts und dessen örtliche Änderung unabhängig vom Arbeitsabstand zu bestimmen. Um den Temperatureinfluss auf die Formmessunsicherheit des P-LDD-Sensors zu quantifizieren, wird eine Messunsicherheitsbetrachtung nach GUM (Guide to the Expression of Uncertainty in Measurement) unter Berücksichtigung zufälliger und systematischer Messabweichungen durchgeführt. Im Ergebnis wird gezeigt, dass der P-LDD-Sensor durch die gleichzeitige Positions- und Geschwindigkeitsmessung in der Lage ist, die dreidimensionale Form schnell rotierender Objekte mit Submikrometer-Unsicherheit zu bestimmen. Die systematische Messabweichung des absoluten Radius auf Grund der Temperatur beträgt dabei lediglich 200 nm/K. Der P-LDD-Sensor ist somit nicht auf klimatisierte Messräume angewiesen, was einen Einsatz direkt im Fertigungsbetrieb (in-situ, in-process) erlaubt.

About the authors

Micha Sebastian Schuster

Micha Schuster is studying Mechatronics at the TU Dresden since 2012 with the majors measurement technology, robotics and simulation technology. He was awarded the best student paper award at the 18. VDI/ITG Fachtagung Sensoren und Messsysteme in Nuremberg 2016.

Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik; Institut für Grundlagen der Elektrotechnik und Elektronik, Professur für Mess- und Sensorsystemtechnik, Dresden, Germany

Robert Kuschmierz

Robert Kuschmierz is member of VDI, DPG and SPIE. He was awarded a Precision Measurement Award of Meas. Sci. Technol. 2015 as well as the best student paper award at the 18. VDI/ITG Fachtagung Sensoren und Messsysteme in Nuremberg 2016. He has been working at the Fraunhofer Institute for Non-destructive Testing. Since 2012 he is working at the Laboratory of Measurement and Sensor System Technique and is heading the surface metrology group since 2016.

Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik; Institut für Grundlagen der Elektrotechnik und Elektronik, Professur für Mess- und Sensorsystemtechnik, Dresden, Germany

Jürgen Czarske

Jürgen Czarske (Fellow EOS, OSA, SPIE and Senior IEEE) holds a Ph.D. from Leibniz University Hannover. His awards include a Precision Measurement Award of MST 2015, an ASME Best Paper Award 2011, a Berthold Leibinger Innovation Prize 2008 and the Measurement Technique Prize of AHMT 1996. Jürgen Czarske has held positions at Siemens AG (Munich) and LZH (private research institute, Hannover), where he was head of the department of measurement technique. From 1996 until 2001 he was temporally visiting scholar in Japan and USA. In 2003 he has earned his venia legendi. In 2004 he was appointed Chair Professor and Head of the Laboratory of Measurement and Sensor System Technique, TU Dresden, Germany. In 2014 he has won a Reinhart Koselleck award of DFG for highly innovative research. In 2016 he was appointed Director of the Institute of Fundamentals of Electrical Engineering and Electronics. He has published over 150 peer-reviewed journal papers and has transferred several patents to industry.

Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik; Institut für Grundlagen der Elektrotechnik und Elektronik, Professur für Mess- und Sensorsystemtechnik, Dresden, Germany

Acknowledgement

The authors thank the Deutsche Forschungsgemeinschaft (DFG) for their financial support (project Cz 55/29-1) and Physikalisch-Technische Bundesanstalt (PTB), DMT Drehmaschinen GmbH (B. Klausmann) as well as OPTOLUTION Messtechnik GmbH (Dr. Müller) for providing their knowledge and facilities.

Received: 2016-11-17
Revised: 2016-11-24
Accepted: 2016-11-25
Published Online: 2017-1-5
Published in Print: 2017-6-27

©2017 Walter de Gruyter Berlin/Boston

Downloaded on 7.12.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/teme-2016-0060/html
Scroll Up Arrow