Abstract
In the small-angle forward scattering technique, an inversion method of particle size distribution (PSD) using artificial fish swarm algorithm (AFSA) is proposed, which can acquire optimal characteristic parameters of the PSD. Simulations are performed to verify the effectiveness of AFSA, in which spheroidal particles of a unimodal distribution that conforms to Johnson’s
The measurement system of the small-angle forward scattering based on Mie scattering theory is constructed and experiments are performed to verify the practicability of AFSA. A CCD sensor is adopted to receive the scattered light instead of the conventional photodetector. Pinhole is first proposed to replace standard particles and calibrate the measurement system, which can eliminate the influence of particle concentration. After the calibration experiments, the PSD of standardized polystyrene microspheres are measured and modified. Both the simulation and experiment results indicate that the PSD can be successfully inverted by AFSA with high reliability and stability in certain conditions, and the system calibration can further improve the inversion accuracy.
Zusammenfassung
In der Kleinwinkelvorwärtsstreutechnik wird eine Inversionsmethode der Partikelgrößenverteilung (PSD) unter Verwendung des künstlichen Fischschwarmalgorithmus (AFSA) vorgeschlagen, die optimale charakteristische Parameter des PSD erfassen kann. Es werden Simulationen durchgeführt, um die Wirksamkeit von AFSA zu überprüfen, bei denen sphäroidische Partikel mit einer unimodalen Verteilung, die der
Das Messsystem der Kleinwinkelvorwärtsstreuung basierend auf der Mie-Streutheorie wird aufgebaut, und es werden Experimente durchgeführt, um die Praktikabilität von AFSA zu überprüfen. Ein CCD-Sensor wird verwendet, um das gestreute Licht anstelle des herkömmlichen Photodetektors zu empfangen. Pinhole wird zunächst vorgeschlagen, um Standardpartikel zu ersetzen und das Messsystem zu kalibrieren, was den Einfluss der Partikelkonzentration eliminieren kann. Nach den Kalibrierversuchen werden die PSD von standardisierten Polystyrol-Mikrokugeln gemessen und modifiziert. Sowohl die Simulations- als auch die Versuchsergebnisse deuten darauf hin, dass die PSD von AFSA mit hoher Zuverlässigkeit und Stabilität unter bestimmten Bedingungen erfolgreich invertiert werden kann, und die Systemkalibrierung kann die Umkehrgenauigkeit weiter verbessern.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 51874264
Award Identifier / Grant number: 51476154
Award Identifier / Grant number: 51404223
Funding statement: This work was supported by the National Natural Science Foundation of China [51874264, 51476154, 51404223].
About the authors

Liang Shan received her M.Sc. degree from Southeast University in 2004. Now she is an Associate Professor in China Jiliang University. Her main research interests include photoelectric detection and signal processing.

Liang Xu received his B.Sc. degree from Henan Agricultural University in 2015. He is currently pursuing the M.Sc. degree with the College of Information Engineering from China Jiliang University. He main research interest is photoelectric detection.

Lixia Cao received her M.Sc. degree from China Jiliang University in 2015. She is currently pursuing the Ph.D. degree with the School of Energy and Environment from Southeast University. Her main research interests are broadly in multiphase flow instrumentation.

Bo Hong received her B.Sc. degree from Shan Dong University in 2001, and received her M.Sc. degree from Zhe Jiang University in 2004. She is currently pursuing the Ph.D. degree with School of Information from Ningbo University. Her main research interests include optics-electrical precision detection technology and low power design.

Daodang Wang received his Ph.D. degree from Zhejiang University in 2012. Now he is an Associate Professor in China Jiliang University. His research interest mainly focuses on the optical testing.

Tiantai Guo received his Ph.D. degree from Zhejiang University in 2015. Now he is an Associate Professor in China Jiliang University. His research interest mainly focuses on geometrical precision measurement.

Ming Kong received his Ph.D. degree from Southeast University in 2005. Now he is a Full Professor in China Jiliang University. His main research interests include photoelectric detection and multiphase flow detection.
References
1. P. J. Dobson. Absorption and scattering of light by small particles. Physics Bulletin, 35(3): 104, 1984.10.1088/0031-9112/35/3/025Search in Google Scholar
2. A. R. Jones. Light scattering for particle characterization. Progress in Energy and Combustion Science, 25(1): 1–53, 1999.10.1016/S0360-1285(98)00017-3Search in Google Scholar
3. G. Franssens, Mazire M. De, and D. Fonteyn. Determination of the aerosol size distribution by analytic inversion of the extinction spectrum in the complex anomalous diffraction approximation. Applied Optics, 39(24): 4214, 2000.10.1364/AO.39.004214Search in Google Scholar
4. L. M. Ruan, X. Y. Wang, H. Qi, and S. G. Wang. Experimental investigation on optical constants of aerosol particles. Journal of Aerosol Science, 42(11): 759–770, 2011.10.1016/j.jaerosci.2011.07.001Search in Google Scholar
5. A. B. Yu and N. Standish. A study of particle size distributions. Powder Technology, 62(2): 101–118, 1990.10.1016/0032-5910(90)80073-8Search in Google Scholar
6. T. Igushi and H. Yoshida. Investigation of low-angle laser light scattering patterns using the modified twomey iterative method for particle sizing. Review of Scientific Instruments, 82(1): 015111, 2011.10.1063/1.3520136Search in Google Scholar PubMed
7. X. j. Zhu, J. Shen, Y. L. Wang, J. Guan, X. M. Sun, and X. Q. Wang. The reconstruction of particle size distributions from dynamic light scattering data using particle swarm optimization techniques with different objective functions. Optics and Laser Technology, 43(7): 1128–1137, 2011.10.1016/j.optlastec.2011.02.010Search in Google Scholar
8. Y. B. Gao, L. W. Guan, and T.J. Wang. Optimal artificial swarm algorithm for the field calibration on marine navigation. Measurement, 50(4): 297–304, 2014.10.1016/j.measurement.2014.01.003Search in Google Scholar
9. Md. Abul Kalam Azad, Ana Maria A. C. Rocha, and Edite M. G. P. Fernandes. A simplified binary artificial swarm algorithm for 0–1 quadratic knapsack problems. Journal of Computational and Applied Mathematics, 259(4): 897–904, 2014.10.1016/j.cam.2013.09.052Search in Google Scholar
10. Z. H. Nie, X. X. Yang, Z. X. Hou, S. M. Li, and R. H. Du. Study on particle size distribution of dynamic light scattering nanoparticles based on inversion algorithm. Journal of Nanoelectronics & Optoelectronics, 12(11): 1207–1210, 2017.10.1166/jno.2017.2274Search in Google Scholar
11. G. H. Tang, C. L. Xu, L. T. Shao, and S. M. Wang. Research on inversion algorithm and experiment of doas based on genetic algorithm. Journal of Engineering Thermophysics, 2008.Search in Google Scholar
12. X. G. Sun, H. Tang, and G. B. Yuan. Study of inversion and classification of particle size distribution under dependent model algorithm. Spectroscopy and Spectral Analysis, 28(5): 1111, 2008.Search in Google Scholar
13. L. X. Li, Z. J. Shao, and J. X. Qian. An optimizing method based on autonomous animals-swarm algorithm systems engineering. Theory and Practice, 32(01): 32–38, 2002.Search in Google Scholar
14. X. Zhang, D. Liu, W. Yang, and Y. Yang. Diameter detection of single crystal silicon based on artificial swarm algorithm-hough transform. Chinese Journal of Scientific Instrument, 35(4): 940–947, 2014.Search in Google Scholar
15. X. M. Ma and N. Liu. Improved artificial-swarm algorithm based on adaptive vision for solving the shortest path problem. Journal on Communications, 2014.Search in Google Scholar
16. D. Y. Kong, H. Peng, and J. Q. Ma. Adaptive stochastic resonance method based on Artificial-swarm optimization. Acta Electronica Sinica, 45(8): 1864–1872, 2017.Search in Google Scholar
17. Z. Z. He, H. Qi, T. Jia, and L. M. Ruan. Application of improved artificial school algorithm in retrieving aerosol particle size distribution. Journal of Central South University (Social Science Edition), 47(6): 2141–2146, 2016.Search in Google Scholar
18. Y. M. Wang, G. B. Liang, and Z. D. Pan. Inversion of particle size distribution from light-scattering data using a modified regularization algorithm. Particuology, 08(4): 365–371, 2010.10.1016/j.partic.2009.11.003Search in Google Scholar
19. Q. Lv. The research of iterative regularization methods for ill-posed problems. PhD thesis, Wuhan University of Technology, 2012.Search in Google Scholar
20. W. Z. Xiu, J. Shen, Y. Y. Xiao, M. Xu, Y. J. Wang, and L. J. Yin. Comparison between the regularization algorithm and the Chahine algorithm in inversion of scattering measurement data of the noisy dynamic light. Acta Photonica Sinica, 45(11): 153–159, 2016.10.3788/gzxb20164511.1112004Search in Google Scholar
21. C. J. Lin, J. Q. Shen, and T. N. Wang. Multi-parameter regularization algorithm in particle size measurement of forward light scattering. Chinese Journal of Lasers, (11): 165–173, 2016.Search in Google Scholar
22. Y. Z. Shao, C. Tan, and F. Dong. Measurement of particle size distribution in dispersed oil-water two-phase flow using ultrasonic attenuation method. Journal of Engineering Thermophysics, 39(4): 2018.Search in Google Scholar
23. Marthe Lagarrigue, Sandra Jacquier, Johan Debayle, Jean Charles Pinoli, and Frédéric Gruy. Approximation for the light scattering cross-section of optically hard aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 113(9): 704–714, 2012.10.1016/j.jqsrt.2012.02.019Search in Google Scholar
24. G. Gouesbet. T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates. Optics Communications, 283(4): 517–521, 2010.10.1016/j.optcom.2009.10.092Search in Google Scholar
25. L. J. Xu, L. Xin, and Z. Cao. L1-norm-based reconstruction algorithm for particle sizing. IEEE Transactions on Instrumentation and Measurement, 61(5): 1395–1404, 2012.10.1109/TIM.2012.2186475Search in Google Scholar
26. P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems[J]. Computational Inverse Problems in Electrocardiology, 55: 1–315, 2001.Search in Google Scholar
27. X. G. Sun, H. Tang, and J. M. Dai. Inversion of particle size distribution from spectral extinction data using the modified beta function. Powder Technology, 190(3): 292–296, 2009.10.1016/j.powtec.2008.08.017Search in Google Scholar
28. Tatsuo Igushi and Hideto Yoshida. The effect of initial parameters on particle size distribution inverted using the laser diffraction technique and a non-linear iterative method. Advanced Powder Technology, 23(5): 682–692, 2012.10.1016/j.apt.2012.05.001Search in Google Scholar
29. Y. Zhan, K. Gu, F. Yang, H. Wu, and M. Yu. A bubble detection technique based on light intensity and mie scattering theory for spinning solution. Optik – International Journal for Light and Electron Optics, 124(20): 4236–4239, 2013.10.1016/j.ijleo.2012.12.026Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston