Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag November 30, 2018

Inversion of particle size distribution using the artificial fish swarm algorithm

Inversion der Korngrößenverteilung mit künstlichem Fischschwarm-Algorithmus
Liang Shan, Liang Xu, Lixia Cao, Bo Hong, Daodang Wang, Tiantai Guo and Ming Kong
From the journal tm - Technisches Messen

Abstract

In the small-angle forward scattering technique, an inversion method of particle size distribution (PSD) using artificial fish swarm algorithm (AFSA) is proposed, which can acquire optimal characteristic parameters of the PSD. Simulations are performed to verify the effectiveness of AFSA, in which spheroidal particles of a unimodal distribution that conforms to Johnson’s SB function is inversed at different levels of gaussian white noise. The comparison of the smooth objective function and non-smooth objective function of AFSA is conducted and discussed.

The measurement system of the small-angle forward scattering based on Mie scattering theory is constructed and experiments are performed to verify the practicability of AFSA. A CCD sensor is adopted to receive the scattered light instead of the conventional photodetector. Pinhole is first proposed to replace standard particles and calibrate the measurement system, which can eliminate the influence of particle concentration. After the calibration experiments, the PSD of standardized polystyrene microspheres are measured and modified. Both the simulation and experiment results indicate that the PSD can be successfully inverted by AFSA with high reliability and stability in certain conditions, and the system calibration can further improve the inversion accuracy.

Zusammenfassung

In der Kleinwinkelvorwärtsstreutechnik wird eine Inversionsmethode der Partikelgrößenverteilung (PSD) unter Verwendung des künstlichen Fischschwarmalgorithmus (AFSA) vorgeschlagen, die optimale charakteristische Parameter des PSD erfassen kann. Es werden Simulationen durchgeführt, um die Wirksamkeit von AFSA zu überprüfen, bei denen sphäroidische Partikel mit einer unimodalen Verteilung, die der SB-Funktion von Johnson entspricht, bei verschiedenen Pegeln des gaußschen weißen Rauschens umgekehrt werden. Der Vergleich der glatten Zielfunktion und der nicht glatten Zielfunktion von AFSA wird durchgeführt und diskutiert.

Das Messsystem der Kleinwinkelvorwärtsstreuung basierend auf der Mie-Streutheorie wird aufgebaut, und es werden Experimente durchgeführt, um die Praktikabilität von AFSA zu überprüfen. Ein CCD-Sensor wird verwendet, um das gestreute Licht anstelle des herkömmlichen Photodetektors zu empfangen. Pinhole wird zunächst vorgeschlagen, um Standardpartikel zu ersetzen und das Messsystem zu kalibrieren, was den Einfluss der Partikelkonzentration eliminieren kann. Nach den Kalibrierversuchen werden die PSD von standardisierten Polystyrol-Mikrokugeln gemessen und modifiziert. Sowohl die Simulations- als auch die Versuchsergebnisse deuten darauf hin, dass die PSD von AFSA mit hoher Zuverlässigkeit und Stabilität unter bestimmten Bedingungen erfolgreich invertiert werden kann, und die Systemkalibrierung kann die Umkehrgenauigkeit weiter verbessern.

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 51874264

Award Identifier / Grant number: 51476154

Award Identifier / Grant number: 51404223

Funding statement: This work was supported by the National Natural Science Foundation of China [51874264, 51476154, 51404223].

References

1. P. J. Dobson. Absorption and scattering of light by small particles. Physics Bulletin, 35(3): 104, 1984.10.1088/0031-9112/35/3/025 Search in Google Scholar

2. A. R. Jones. Light scattering for particle characterization. Progress in Energy and Combustion Science, 25(1): 1–53, 1999.10.1016/S0360-1285(98)00017-3 Search in Google Scholar

3. G. Franssens, Mazire M. De, and D. Fonteyn. Determination of the aerosol size distribution by analytic inversion of the extinction spectrum in the complex anomalous diffraction approximation. Applied Optics, 39(24): 4214, 2000.10.1364/AO.39.004214 Search in Google Scholar

4. L. M. Ruan, X. Y. Wang, H. Qi, and S. G. Wang. Experimental investigation on optical constants of aerosol particles. Journal of Aerosol Science, 42(11): 759–770, 2011.10.1016/j.jaerosci.2011.07.001 Search in Google Scholar

5. A. B. Yu and N. Standish. A study of particle size distributions. Powder Technology, 62(2): 101–118, 1990.10.1016/0032-5910(90)80073-8 Search in Google Scholar

6. T. Igushi and H. Yoshida. Investigation of low-angle laser light scattering patterns using the modified twomey iterative method for particle sizing. Review of Scientific Instruments, 82(1): 015111, 2011. Search in Google Scholar

7. X. j. Zhu, J. Shen, Y. L. Wang, J. Guan, X. M. Sun, and X. Q. Wang. The reconstruction of particle size distributions from dynamic light scattering data using particle swarm optimization techniques with different objective functions. Optics and Laser Technology, 43(7): 1128–1137, 2011.10.1016/j.optlastec.2011.02.010 Search in Google Scholar

8. Y. B. Gao, L. W. Guan, and T.J. Wang. Optimal artificial swarm algorithm for the field calibration on marine navigation. Measurement, 50(4): 297–304, 2014.10.1016/j.measurement.2014.01.003 Search in Google Scholar

9. Md. Abul Kalam Azad, Ana Maria A. C. Rocha, and Edite M. G. P. Fernandes. A simplified binary artificial swarm algorithm for 0–1 quadratic knapsack problems. Journal of Computational and Applied Mathematics, 259(4): 897–904, 2014.10.1016/j.cam.2013.09.052 Search in Google Scholar

10. Z. H. Nie, X. X. Yang, Z. X. Hou, S. M. Li, and R. H. Du. Study on particle size distribution of dynamic light scattering nanoparticles based on inversion algorithm. Journal of Nanoelectronics & Optoelectronics, 12(11): 1207–1210, 2017.10.1166/jno.2017.2274 Search in Google Scholar

11. G. H. Tang, C. L. Xu, L. T. Shao, and S. M. Wang. Research on inversion algorithm and experiment of doas based on genetic algorithm. Journal of Engineering Thermophysics, 2008. Search in Google Scholar

12. X. G. Sun, H. Tang, and G. B. Yuan. Study of inversion and classification of particle size distribution under dependent model algorithm. Spectroscopy and Spectral Analysis, 28(5): 1111, 2008. Search in Google Scholar

13. L. X. Li, Z. J. Shao, and J. X. Qian. An optimizing method based on autonomous animals-swarm algorithm systems engineering. Theory and Practice, 32(01): 32–38, 2002. Search in Google Scholar

14. X. Zhang, D. Liu, W. Yang, and Y. Yang. Diameter detection of single crystal silicon based on artificial swarm algorithm-hough transform. Chinese Journal of Scientific Instrument, 35(4): 940–947, 2014. Search in Google Scholar

15. X. M. Ma and N. Liu. Improved artificial-swarm algorithm based on adaptive vision for solving the shortest path problem. Journal on Communications, 2014. Search in Google Scholar

16. D. Y. Kong, H. Peng, and J. Q. Ma. Adaptive stochastic resonance method based on Artificial-swarm optimization. Acta Electronica Sinica, 45(8): 1864–1872, 2017. Search in Google Scholar

17. Z. Z. He, H. Qi, T. Jia, and L. M. Ruan. Application of improved artificial school algorithm in retrieving aerosol particle size distribution. Journal of Central South University (Social Science Edition), 47(6): 2141–2146, 2016. Search in Google Scholar

18. Y. M. Wang, G. B. Liang, and Z. D. Pan. Inversion of particle size distribution from light-scattering data using a modified regularization algorithm. Particuology, 08(4): 365–371, 2010.10.1016/j.partic.2009.11.003 Search in Google Scholar

19. Q. Lv. The research of iterative regularization methods for ill-posed problems. PhD thesis, Wuhan University of Technology, 2012. Search in Google Scholar

20. W. Z. Xiu, J. Shen, Y. Y. Xiao, M. Xu, Y. J. Wang, and L. J. Yin. Comparison between the regularization algorithm and the Chahine algorithm in inversion of scattering measurement data of the noisy dynamic light. Acta Photonica Sinica, 45(11): 153–159, 2016. Search in Google Scholar

21. C. J. Lin, J. Q. Shen, and T. N. Wang. Multi-parameter regularization algorithm in particle size measurement of forward light scattering. Chinese Journal of Lasers, (11): 165–173, 2016. Search in Google Scholar

22. Y. Z. Shao, C. Tan, and F. Dong. Measurement of particle size distribution in dispersed oil-water two-phase flow using ultrasonic attenuation method. Journal of Engineering Thermophysics, 39(4): 2018. Search in Google Scholar

23. Marthe Lagarrigue, Sandra Jacquier, Johan Debayle, Jean Charles Pinoli, and Frédéric Gruy. Approximation for the light scattering cross-section of optically hard aggregates. Journal of Quantitative Spectroscopy and Radiative Transfer, 113(9): 704–714, 2012.10.1016/j.jqsrt.2012.02.019 Search in Google Scholar

24. G. Gouesbet. T-matrix formulation and generalized Lorenz-Mie theories in spherical coordinates. Optics Communications, 283(4): 517–521, 2010.10.1016/j.optcom.2009.10.092 Search in Google Scholar

25. L. J. Xu, L. Xin, and Z. Cao. L1-norm-based reconstruction algorithm for particle sizing. IEEE Transactions on Instrumentation and Measurement, 61(5): 1395–1404, 2012. Search in Google Scholar

26. P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems[J]. Computational Inverse Problems in Electrocardiology, 55: 1–315, 2001. Search in Google Scholar

27. X. G. Sun, H. Tang, and J. M. Dai. Inversion of particle size distribution from spectral extinction data using the modified beta function. Powder Technology, 190(3): 292–296, 2009.10.1016/j.powtec.2008.08.017 Search in Google Scholar

28. Tatsuo Igushi and Hideto Yoshida. The effect of initial parameters on particle size distribution inverted using the laser diffraction technique and a non-linear iterative method. Advanced Powder Technology, 23(5): 682–692, 2012.10.1016/j.apt.2012.05.001 Search in Google Scholar

29. Y. Zhan, K. Gu, F. Yang, H. Wu, and M. Yu. A bubble detection technique based on light intensity and mie scattering theory for spinning solution. Optik – International Journal for Light and Electron Optics, 124(20): 4236–4239, 2013.10.1016/j.ijleo.2012.12.026 Search in Google Scholar

Received: 2018-07-28
Accepted: 2018-11-16
Published Online: 2018-11-30
Published in Print: 2019-01-28

© 2019 Walter de Gruyter GmbH, Berlin/Boston