Abstract
The objective of the study was to examine how precipitation and deposition layer growth in an electrochemical cell impact impedance measurements. A measurement system, based on Electrochemical Impedance Spectroscopy (EIS), was used to observe the impedance of an electrochemical cell while precipitation was occurring. The measurement system was also used together with measurements of the solution concentration (in parts per million, ppm) to examine what impact deposition layer growth has on an electrochemical cell. Experimental results indicate a measurable change in the impedance magnitude as the ionic concentration is altered through precipitation. A change in both impedance magnitude and the interfacial capacitance was observed when a deposition layer was established within an electrochemical cell. Results show that impedance measurements are susceptible to changes in solution conductivity and to the presence of a deposition layer in an electrochemical cell. Impedance measurements may be used as an indicator for deposition layer growth, but changes in the solution concentration should be considered when creating a model.
Zusammenfassung
Das Ziel dieser Arbeit war es zu untersuchen, welchen Einfluss Abscheidungen und Ausfällungen an den Elektroden einer elektrochemischen Zelle auf die gemessene Impedanz haben. Es wurde ein Messsystem entwickelt, mit dem es über die elektrochemische Impedanzspektroskopie (EIS) möglich ist die Veränderung der gemessenen Impedanz während des laufenden Abscheidungsprozesses zu erfassen. In Verbindung mit der gleichzeitigen Messung der Konzentration der Lösung kann der Einfluss des Schichtwachstums auf die elektrochemischen Prozesse in der Messzelle bestimmt werden. Erste experimentelle Ergebnisse zeigen eine deutlich messbare Änderung der Impedanz als Funktion der sinkenden Ionenkonzentration, die durch die Ausfällung bewirkt wird. Eine Änderung sowohl des Betrags der Impedanz als auch der Grenzflächenkapazität wurde beobachtet nachdem erste Abscheidungen festgestellt wurden. Die Ergebnisse zeigen auch, dass die Impedanzmessung stark von der Änderungen der Leitfähigkeit der Lösung und dem Auftreten einer Abscheidungsschicht in der Zelle abhängig ist. Die Impedanz kann als guter Indikator für das Vorhandensein dieser Abscheidung dienen, wenn die Änderung der Konzentration der Lösung beim Erstellen des Modells berücksichtigt wird.
About the authors

Ronnie Anseth held a Bachelor of engineering in Cybernetics from Oslo University College (OUC) in 2009, and a Master of Technology in System and Control Engineering from Telemark University College (TUC) in 2011. Currently (2018) a PhD student at University of South-Eastern Norway (USN). TUC merged with several university colleges into University of South-Eastern Norway (USN) in 2018.

Nils-Olav Skeie held a Master of Science in Cybernetic from Norwegian University of Science and Technology (NTNU) from 1985 and a PhD in Cybernetics from NTNU and Telemark University College (TUC) from 2008. TUC merged with several university colleges into University of South-Eastern Norway (USN) in 2018. He has industrial experience from 1985 to 2003 with system design, both software and hardware development, within the aviation and maritime sectors. He has academic experience from 2003, and been an Associate Professor at USN since 2008, teaching in measurement techniques, software design and system design on BSc and MSc levels. He supervises BSc, MSc and PhD students. His main research areas are within smart cities and smart buildings, with focus on energy and welfare systems, soft sensors, sensor networks, and level measurements.

Magne Waskaas is professor at University of South-eastern Norway, in automation. He graduated in physics at Norwegian University of Science and Technology, Trondheim and received a PhD in the field of magnetoelectrochemistry at the University of Oslo. His research interests include industrial measurements and effects of electric and magnetic fields on electrochemical processes.
Acknowledgment
The main author is grateful for the PhD position provided by the University of South-Eastern Norway making this research possible.
References
1. I. Frerichs, G. Hahn, H. Schiffmann, C. Berger, and G. Hellige. Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Annals of the New York Academy of Sciences, 873:493–505, 1999.10.1111/j.1749-6632.1999.tb09498.xSearch in Google Scholar PubMed
2. S. Maisch, S. H. Bohm, J. Solà, M. S. Goepfert, J. C. Kubitz, H. P. Richter, J. Ridder, A. E. Goetz, and D. A. Reuter. Heart-lung interactions measured by electrical impedance tomography. Critical care medicine, 39:2173–2179, 2011.10.1097/CCM.0b013e3182227e65Search in Google Scholar PubMed
3. D. Miranda, S. Jaimes, and J. Bastidas. Assessment of carbon steel microbiologically induced corrosion by electrical impedance spectroscopy. Journal of Solid State Electrochemistry, 18:389–398, 2014.10.1007/s10008-013-2262-5Search in Google Scholar
4. T. Piasecki and K. Nitsch. Study of sprayed coatings and compound materials by impedance spectroscopy. Surface and Coatings Technology, 205:1009–1015, 2010.10.1016/j.surfcoat.2010.07.074Search in Google Scholar
5. A. Eddahech, O. Briat, N. Bertrand, J. Delétage, and J.-M. Vinassa. Behavior and state-of-health monitoring of li-ion batteries using impedance spectroscopy and recurrent neural networks. International Journal of Electrical Power and Energy Systems, 42:487–494, 2012.10.1016/j.ijepes.2012.04.050Search in Google Scholar
6. J. Newman and K. E. Thomas-Alyea. Electrochemical Systems. John Wiley and Sons, 2004.Search in Google Scholar
7. A. J. Bard and L. R. Faulkner. Electrochemical Methods – Fundamentals and Applications. John Wiley and Sons, 2001.Search in Google Scholar
8. M. E. Orazem and B. Tribollet. Electrochemical Impedance Spectroscopy. Wiley, 2008.10.1002/9780470381588Search in Google Scholar
9. R. Anseth, N. Skeie, and M. Waskaas. Preliminary studies on monitoring fouling layers on a charged electrode using electrical impedance spectroscopy. tm – Technisches Messen, 85:137–146, 2018.10.1515/teme-2017-0129Search in Google Scholar
10. M. Waskaas, I. H. Matveyev, and K. H. Esbensen. Novel discovery: Flow improvement by a particular applied electrical dc-potential. an experimental study. Magnetohydrodynamics, 39:501–506, 2003.10.22364/mhd.39.4.15Search in Google Scholar
11. D. Plausinaitis, M. Waskaas, R. Raudonis, and V. Daujotis. Wall electric polarization as a stability modifier for wall-bounded water flow. In 9th Spring Meeting of the International Society of Electrochemistry, 2011.Search in Google Scholar
12. V. Lvovich. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena. Wiley, 2015.Search in Google Scholar
13. Gamry Instruments. Basics of Electrochemical Impedance Spectroscopy, 9 2010. Rev. 1.0.Search in Google Scholar
14. J. O’M Bockris, A. K. N. Reddy, and M Gamboa-Aldec. Modern electrochemistry. Kluwer Academic/Plenum Publisher, 2A:1127–1139, 2000.Search in Google Scholar
15. M. Olivier and M. Poelman. Use of electrochemical impedance spectroscopy (EIS) for the evaluation of electrocoatings Performances. In: Recent Researches in Corrosion evaluation and protection. IntechOpen, 2012.10.5772/33844Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston