Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag March 2, 2019

Die Biometrie des Auges als Ursache für systematische Messabweichungen bei der akustischen Tonometrie

Biometry of the eye as a cause of systematic measurement deviations in acoustic tonometry
Jan Osmers, Michael Sorg and Andreas Fischer
From the journal tm - Technisches Messen

Zusammenfassung

Zur Glaukomtherapie ist eine Überwachung des Augeninnendrucks erforderlich, wofür ein akustisches Selbsttonometer entwickelt worden ist. Die Laborversuche an Schweineaugen und die Patientenmessungen in einer klinischen Versuchsreihe belegen jedoch signifikante Querempfindlichkeiten von den biometrischen Parametern des Auges auf den gemessenen Augeninnendruck. Um die Individualität der Augen in der Auswertung der Messdaten zu berücksichtigen, werden Finite-Elemente-Simulationen des Auges für unterschiedliche geometrische Ausprägungen durchgeführt. Anhand der Simulationsergebnisse wird der Einfluss der Augengeometrie auf die Messunsicherheit des zu messenden Augeninnendrucks quantifiziert. Dadurch lässt sich bei Kenntnis der individuellen Augengeometrie des Patienten die systematische Messabweichung des Augeninnendrucks signifikant reduzieren und für das akustische Selbsttonometer eine Messunsicherheit in der Größenordnung aktueller klinischer Tonometer erzielen.

Abstract

Glaucoma therapy requires monitoring of the intraocular pressure, for which an acoustic self-tonometer has been developed. However, the laboratory tests on porcine eyes and the patient measurements in a clinical trial series prove significant cross sensitivity of the biometric parameters of the eye to the measured intraocular pressure. In order to consider the individuality of the eyes in the evaluation of the measured data, finite element simulations of the eye are carried out for different geometric characteristics. The influence of the eye geometry on the measurement uncertainty of the intraocular pressure to be measured is quantified on the basis of the simulation results. By knowing the individual eye geometry of the patient, the systematic measurement error of the intraocular pressure can be significantly reduced and a measurement uncertainty of the order of magnitude of current clinical tonometers can be achieved for the acoustic self-tonometer.

Funding statement: Die vorgestellten Arbeiten wurden vom Bundesministerium für Wirtschaft und Energie der Bundesrepublik Deutschland gefördert, Förderkennziffer: 03THW04H02.

Literatur

1. Silvio P. Mariotti. Global data on visual impairements 2010. http://www.who.int/blindness/GLOBALDATAFINALforweb.pdf, September 2012. Search in Google Scholar

2. Franz Grehn. Augenheilkunde. Springer-Verlag, 30 edition, 2008. Search in Google Scholar

3. Jost B Jonas, Tin Aung, Rupert R Bourne, Alain M Bron, Robert Ritch, and Songhomitra Panda-Jonas. Glaucoma. The Lancet, 390 (10108): p. 2183–2193, 2017. ISSN 0140-6736. Search in Google Scholar

4. Paul C. VanVeldhuisen, Fred Ederer, Douglas E. Gaasterland, E. Kenneth Sullivan, Allen Beck, Bruce E. Jr Prum, Marshall N. Cyrlin, and Howard Weiss. The advanced glaucoma intervention study (AGIS): 7. the relationship between control of intraocular pressure and visual field deterioration. American Journal of Ophthalmology, 130 (4): 429–440, oct 2000. 10.1016/s0002-9394(00)00538-9. Search in Google Scholar

5. A Rosentreter, M Neuburger, J.F. Jordan, A.M. Schild, and T.S. Dietlein. Einflussgrößen auf die Applanationstonometrie–ein praxisorientierter Überblick, volume 228, chapter 3, pp. 109–113. Georg Thieme Verlag KG, Stuttgart, New York, 2011. Search in Google Scholar

6. James D Brandt, Julia A Beiser, Michael A Kass, and Mae O Gordon. Central corneal thickness in the ocular hypertension treatment study (OHTS). Ophthalmology, 108 (10): 1779–1788, oct 2001. 10.1016/s0161-6420(01)00760-6. Search in Google Scholar

7. Alireza Mehdizadeh, Amin Hoseinzadeh, and Afsoon Fazelzadeh. Central corneal thickness as a risk factor for glaucoma. Medical Hypotheses, 69 (6): 1205–1207, jan 2007. 10.1016/j.mehy.2006.12.066. Search in Google Scholar

8. Markus Kohlhaas. Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Archives of Ophthalmology, 124 (4): 471, apr 2006. 10.1001/archopht.124.4.471. Search in Google Scholar

9. J. Wachtl, M. Töteberg-Harms, S. Frimmel, and C. Kniestedt. Evaluation von korrekturformeln für die tonometrie. Der Ophthalmologe, 114 (8): 716–721, dec 2016. 10.1007/s00347-016-0409-3. Search in Google Scholar

10. Mohammad Arsalan Khan. Numerical study on human cornea and modified multiparametric correction equation for goldmann applanation tonometer. Journal of the Mechanical Behavior of Biomedical Materials, 30: 91–102, feb 2014. 10.1016/j.jmbbm.2013.10.002. Search in Google Scholar

11. Tukezban Huseynova, George O. Waring, Cynthia Roberts, Ronald R. Krueger, and Minoru Tomita. Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and scheimpflug imaging analysis in normal eyes. American Journal of Ophthalmology, 157 (4): 885–893, apr 2014. 10.1016/j.ajo.2013.12.024. Search in Google Scholar

12. Kishor Sapkota, Sandra Franco, and Madalena Lira. Intraocular pressure measurement with ocular response analyzer over soft contact lens. Contact Lens and Anterior Eye, 37 (6): 415–419, dec 2014. 10.1016/j.clae.2014.07.002. Search in Google Scholar

13. Jan Osmers, Ágnes Patzkó, Oskar Hoppe, Michael Sorg, Axel von Freyberg, and Andreas Fischer. The influence of intraocular pressure on the damping of a coupled speaker-air-eye system. Journal of Sensors and Sensor Systems, 7 (1): 123–130, mar 2018. 10.5194/jsss-7-123-2018. Search in Google Scholar

14. Yanjun Zeng, Jian Yang, Kun Huang, Zhihui Lee, and Xiuyun Lee. A comparison of biomechanical properties between human and porcine cornea. Journal of Biomechanics, 34 (4): 533–537, apr 2001. 10.1016/s0021-9290(00)00219-0. Search in Google Scholar

15. Jan Osmers, Michael Sorg, and Andreas Fischer. Optical measurement of the corneal oscillation for the determination of the intraocular pressure. Biomedical Engineering / Biomedizinische Technik, 0 (0), sep 2018. 10.1515/bmt-2018-0093. Search in Google Scholar

16. Ahmed Elsheikh and Defu Wang. Numerical modelling of corneal biomechanical behaviour. Computer Methods in Biomechanics and Biomedical Engineering, 10 (2): 85–95, apr 2007. 10.1080/10255840600976013. Search in Google Scholar

17. Armin Eilaghi, John G. Flanagan, Inka Tertinegg, Craig A. Simmons, G. Wayne Brodland, and C. Ross Ethier. Biaxial mechanical testing of human sclera. Journal of Biomechanics, 43 (9): 1696–1701, jun 2010. 10.1016/j.jbiomech.2010.02.031. Search in Google Scholar

18. Kunya Zhang, Xiuqing Qian, Xi Mei, and Zhicheng Liu. An inverse method to determine the mechanical properties of the iris in vivo. BioMedical Engineering OnLine, 13 (1): 66, 2014. 10.1186/1475-925x-13-66. Search in Google Scholar

19. Alireza Karimi, Reza Razaghi, Mahdi Navidbakhsh, Toshihiro Sera, and Susumu Kudo. Computing the stresses and deformations of the human eye components due to a high explosive detonation using fluid–structure interaction model. Injury, 47 (5): 1042–1050, 2016. ISSN 0020-1383. 10.1016/j.injury.2016.01.030. Search in Google Scholar

20. Xiaoyu Liu, Lizhen Wang, Chao Wang, Jie Fan, Songyang Liu, and Yubo Fan. Prediction of globe rupture caused by primary blast: a finite element analysis. Computer Methods in Biomechanics and Biomedical Engineering, 18 (9): 1024–1029, mar 2014. 10.1080/10255842.2013.869317. Search in Google Scholar

21. Thomas R. Friberg and J W Lace. A comparison of the elastic properties of human choroid and sclera. Experimental eye research, 47 (3): 429–436, 1988. Search in Google Scholar

Erhalten: 2018-12-14
Angenommen: 2019-02-18
Online erschienen: 2019-03-02
Erschienen im Druck: 2019-04-04

© 2019 Walter de Gruyter GmbH, Berlin/Boston