Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag March 14, 2019

Inline-fähige Weißlichtinterferometrie mit integrierter Schwingungskompensation

Inline scanning white-light interferomety with integrated vibration compensation
Stanislav Tereschenko and Peter Lehmann
From the journal tm - Technisches Messen

Zusammenfassung

Weißlichtinterferometer sind weit verbreitete Messgeräte zur Erfassung von 3D-Mikrotopographien. Der Einsatz solcher Messgeräte in maschinennaher Umgebung abseits schwingungsgedämpfter Labore wird durch Umgebungsschwingungen erschwert oder sogar unmöglich gemacht. In diesem Beitrag wird ein passives Kompensationsverfahren am Beispiel von zwei interferometrischen Sensoren vorgestellt, mit dem der Einfluss beliebiger sowohl periodischer als auch transienter axialer Störschwingungen auf interferometrische Weißlichtmessungen kompensiert werden kann. Durch die zeitlich hochaufgelöste Abstandserfassung eines in das Weißlichtinterferometer integrierten Abstandsinterferometers werden alle Abweichungen von dem Soll-Tiefenscanverlauf gemessen und zur Korrektur der Weißlichtinterferenzsignale verwendet. Daraus wird anschließend mit etablierten Auswertealgorithmen die Oberflächentopographie berechnet. Die Schwingungskompensation wird anhand von Vergleichsmessungen mit und ohne Störschwingungen an verschiedenen Messobjekten demonstriert.

Abstract

Scanning white-light interferometers are widely used measuring instruments for 3D microtopography. Due to environmental vibrations the use of such devices in close-to-machine environments away from vibration-damped laboratories is difficult or even impossible. In this article we present a passive vibration compensation method using the example of two interferometric sensors, which can compensate for the influence of arbitrary periodic and transient axial vibrations on the interferometric white-light measurements. Due to the temporally high-resolution distance detection of a distance measuring laser interferometer integrated into the white-light interferometer, all deviations from the desired linear depth-scanning process are measured and this information is used to correct the white-light interference signals. From these, the surface topography is calculated by well-known evaluation algorithms. The vibration compensation is demonstrated based on comparative measurements with and without disturbing vibrations for different measuring objects.

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: LE 992/9-2

Funding statement: Die Autoren danken der Deutschen Forschungsgemeinschaft (DFG) für die Förderung des Projektes “3D-Analyse von Oberflächenschädigungen in metallischen Werkstoffen unter Ermüdungsbelastung” (Förderkennzeichen LE 992/9-2).

Literatur

1. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen. An application of interference microscopy to integrated circuit inspection and metrology. Proc. of SPIE, 0775:233–247, 1987.10.1117/12.940433Search in Google Scholar

2. S. S. C. Chim and G. S. Kino. Phase measurements using the mirau correlation microscope. Applied Optics, 30(16):2197–2201, 1991.10.1364/AO.30.002197Search in Google Scholar PubMed

3. P. de Groot, X. Colonna de Lega, J. Kramer, and M. Turzhitsky. Determination of fringe order in white-light interference microscopy. Applied Optics, 41(22):4571–4578, 2002.10.1364/AO.41.004571Search in Google Scholar

4. S. Tereschenko. Digitale Analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik. Dissertation, Universität Kassel, 2017.Search in Google Scholar

5. G. C. Cole, J. H. Burge, and L. R. Dettmann. Vibration stabilization of a phase shifting interferometer for large optics. Proc. of SPIE, 3134:438–446, 1997.10.1117/12.279132Search in Google Scholar

6. C. Zhao and J. H. Burge. Vibration-compensated interferometer for measuring cryogenic mirrors. Proc. of SPIE, 3782:399–406, 1999.10.1117/12.369217Search in Google Scholar

7. H. Martin, K. Wang, and X. Jiang. Vibration compensating beam scanning interferometer for surface measurement. Applied Optics, 47(7):888–893, 2008.10.1364/AO.47.000888Search in Google Scholar

8. F. Xie, J. Ren, Z. Chen, and Q. Feng. Vibration-displacement measurements with a highly stabilised optical fiber michelson interferometer system. Optics & Laser Technology, 42:208–213, 2010.10.1016/j.optlastec.2009.06.010Search in Google Scholar

9. X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih. Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise. Applied Optics, 49(15):2903–2909, 2010.10.1364/AO.49.002903Search in Google Scholar PubMed

10. D. Wu, R. Zhu, L. Chen, and J. Li. Transverse spatial phase-shifting method used in vibration-compensated interferometer. International Journal for Light and Electron Optics, 115(8):343–346, 2004.10.1078/0030-4026-00380Search in Google Scholar

11. T. Suzuki, T. Okada, O. Sasaki, and T. Maruyama. Real-time vibration measurement using a feedback type of laser diode interferometer with an optical fiber. Opt. Eng., 36(9):2496–2502, 1997.10.1117/1.601475Search in Google Scholar

12. J. II Mun, T. Jo, T. Kim, and H. J. Pahk. Residual vibration reduction of white-light scanning interferometry by input shaping. Optics Express, 23(1):464–470, 2015.10.1364/OE.23.000464Search in Google Scholar PubMed

13. Z. Song, T. Guo, X. Fu, and X. Hu. Residual vibration control based on a global search method in a high-speed white light scanning interferometer. Applied Optics, 57(13):3415–3422, 2018.10.1364/AO.57.003415Search in Google Scholar PubMed

14. P. Schäfer, D. Broschart, and J. Seewig. Aktive Schwingungsdämpfung eines Weißlichtinterferometers. Technisches Messen, 80:16–20, 2013.10.1524/teme.2013.0003Search in Google Scholar

15. A. Olszak and J. Schmit. Scanning interferometry with reference signal, 2003. US Patent 6,624,894 B2, Sep. 23, 2003.Search in Google Scholar

16. A. Olszak and J. Schmit. High-stability white-light interferometry with reference signal for real-time correction of scanning errors. Opt. Eng., 42(1):54–59, 2003.10.1117/1.1523942Search in Google Scholar

17. J. Schmit, A. G. Olszak, and S. McDermed. White light interferometry with reference signal. Proc. of SPIE, 4777:102–109, 2002.10.1117/12.472209Search in Google Scholar

18. D. Chen, J. Schmit, and M. Novak. Real-time scanner error correction in white light interferometry. Proc. of SPIE, 9276(92760I), 2014.10.1117/12.2071276Search in Google Scholar

19. L. L. Deck. Suppressing phase errors from vibration in phase-shifting interferometry. Applied Optics, 48(20):3948–3960, 2009.10.1364/AO.48.003948Search in Google Scholar

20. H. Broistedt, N. R. Doloca, S. Strube, and R. Tutsch. Random-phase-shift Fizeau interferometer. Applied Optics, 50(36):6564–6575, 2011.10.1364/AO.50.006564Search in Google Scholar PubMed

21. H. Broistedt and R. Tutsch. Zufalls-Phasenschiebe-Interferometer zur Messung sphärischer Oberflächen. Sensoren und Messsysteme, 2014.Search in Google Scholar

22. S. Beer, S. Waldis, and P. Seitz. Video-rate optical coherence tomography imaging with smart pixels. Proceedings of SPIE-OSA Biomedical Optics, 5140(69), 2003.10.1364/ECBO.2003.5140_69Search in Google Scholar

23. P. Lambelet and R. Moosburger. Fast and accurate line scanner based on white light interferometry. Proc. of SPIE, 8788(87880Q), 2013.10.1117/12.2020617Search in Google Scholar

24. J. Park and S. Kim. Vibration-desensitized interferometer by continuous phase shifting with high-speed fringe capturing. Optics Letters, 35(1):19–21, 2009.10.1364/OL.35.000019Search in Google Scholar

25. R. Smythe and R. Moore. Instantaneous phase measuring interferometry. Opt. Eng., 23(4):361–364, 1984.10.1117/12.7973301Search in Google Scholar

26. P. Szwaykowski, R. J. Castonguay, and F. N. Bushroe. Simultaneous phase shifting module for use in interferometry, 2003. US Patent 7,483,145 B2, Nov. 26, 2003.Search in Google Scholar

27. C. L. Koliopoulos. Simultaneous phase-shift interferometer. Proc. of SPIE, 1531:1531 – 9, 1992.10.1117/12.134852Search in Google Scholar

28. B. K. A. Ngoi, K. Venkatakrishnan, N. R. Sivakumar, and T. Bo. Instantaneous phase shifting arrangement for microstructure profiling of flat surfaces. Optics Communications, 190:109–116, 2001.10.1016/S0030-4018(01)01068-9Search in Google Scholar

29. C. Dunsby, Y. Gu, and P. M. W. French. Single-shot phase-stepped wide-field coherence-gated imaging. Optics Express, 11(2):105–115, 2003.10.1364/OE.11.000105Search in Google Scholar PubMed

30. J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant. Pixelated phase-mask dynamic interferometer. Proc. of SPIE, 5531:304–314, 2004.10.1117/12.560807Search in Google Scholar

31. E. Cuche, P. Marquet, and C. Depeursinge. Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of fresnel off-axis holograms. Applied Optics, 38(34):6994–7001, 1999.10.1364/AO.38.006994Search in Google Scholar PubMed

32. T. Colomb, J. Kühn, F. Charriere, and C. Depeursinge. Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram. Optics Express, 14(10):4300–4306, 2006.10.1364/OE.14.004300Search in Google Scholar

33. J. Kühn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge. Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition. Optics Express, 15(12):7231–7242, 2007.10.1364/OE.15.007231Search in Google Scholar PubMed

34. J. Kühn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, C. Depeursinge, and P. Marquet. Axial sub-nanometer accuracy in digital holographic microscopy. Meas. Sci. Technol., 19(074007):8, 2008.10.1088/0957-0233/19/7/074007Search in Google Scholar

35. Cree Inc. Pulsed Over-Current Driving of Cree XLamp LEDs: Information and Cautions, 2016. Application Note.Search in Google Scholar

36. D. C. Rife and R. R. Boorstyn. Single-tone parameter estimation from discrete-time observations. IEEE Transactions on Information Theory, 20(5):591–598, 1974.10.1109/TIT.1974.1055282Search in Google Scholar

37. P. de Groot. Design of error-compensating algorithms for sinusoidal phase shifting interferometry. Applied Optics, 48(35):6788–6796, 2009.10.1364/AO.48.006788Search in Google Scholar PubMed

38. H. Fassbender. On numerical methods for discrete least-squares approximation by trigonometric polynomials. Mathematics of Computation, 66(218):719–741, 1997.10.1090/S0025-5718-97-00845-4Search in Google Scholar

39. S. Tereschenko, P. Lehmann, L. Zellmer, and A. Brückner-Foit. Passive vibration compensation in scanning white-light interferometry. Applied Optics, 55(23):6172–6182, 2016.10.1364/AO.55.006172Search in Google Scholar PubMed

40. P. de Groot. Coherence Scanning Interferometry. In R. Leach, editor, Optical Measurement of Surface Topography, chapter 9, pages 187–208. Springer, Berlin, Heidelberg, 2011.10.1007/978-3-642-12012-1_9Search in Google Scholar

41. S. Tereschenko, P. Lehmann, P. Gollor, and P. Kühnhold. Vibration Compensated High-Resolution Scanning White-light Linnik-Interferometer. Proc. of SPIE, 10329(10329-147), 2017.10.1117/12.2270226Search in Google Scholar

Erhalten: 2018-12-20
Angenommen: 2019-02-21
Online erschienen: 2019-03-14
Erschienen im Druck: 2019-04-04

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow