Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag March 22, 2019

Intramolecular force-compensated hydrogel-based sensors with reduced response times

Intramolekular kraftkompensierte Sensoren auf Hydrogelbasis mit verkürzter Ansprechzeit
Simon Binder ORCID logo and Gerald Gerlach
From the journal tm - Technisches Messen

Abstract

The method of intramolecular force compensation forms a new approach for reducing the response time of hydrogel-based chemical sensors and improving their long-term stability. The principle is based on a single bisensitive hydrogel, that fulfills both the function of a sensor and an actuator. This paper presents the measuring principle, the required bisensitive hydrogel and a sensor setup. The results show the desired bisensitivity of the sensor to the temperature and ion concentration as well as the successful reduction of the response time by more than 50 % compared to the conventional deflection method. The continuous sensor operation with the application of varying measuring solvents indicates a negligibly low hysteresis behaviour.

Zusammenfassung

Die intramolekulare Kraftkompensation stellt ein neuartiges Verfahren dar, mit dem die Ansprechzeit von chemischen Sensoren auf Hydrogelbasis verkürzt und deren Langzeitstabilität verbessert werden kann. Bei dieser Art der Kraftkompensation sind sowohl Sensor- als auch Aktorfunktion in einem einzigen Hydrogel kombiniert. Dieser Beitrag legt die Messmethode, das hierzu notwendige bisensitive Hydrogel und einen entsprechenden Sensoraufbau dar. Die Ergebnisse zeigen, dass sowohl die gewünschte Bisensitivität des Sensors gegenüber der Temperatur und der Ionenkonzentration als auch eine Verkürzung der Ansprechzeit um mehr als 50 % im Vergleich zur herkömmlichen Ausschlagsmethode erreicht werden konnten. Ein kontinuierlicher Sensorbetrieb mit Beaufschlagung variierender Messlösungen weist auf ein vernachlässigbar geringes Hystereseverhalten hin.

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 1865

Funding statement: The work presented in this article was funded by the German Research Foundation within the framework of the Research Training Group 1865 “Hydrogel-based Microsystems”.

Acknowledgment

Our thanks go to Andreas Krause for his support in the hydrogel syntheses.

References

1. B. Bhushan, editor. Nanotribology and Nanomechanics. Springer, Berlin Heidelberg, 4 edition, 2017. Search in Google Scholar

2. S. Binder, A. T. Krause, B. Voit, and G. Gerlach. Bisensitive hydrogel with volume compensation properties for force compensation sensors. IEEE Sensors Letters, 1(6), 2017. 10.1109/LSENS.2017.2774922. Search in Google Scholar

3. S. Binder, A. Krause, and G. Gerlach. Interpenetrating polymer networks for piezoresistive hydrogel-based chemical sensors. 17th International Meeting on Chemical Sensors, Vienna, 2018. Search in Google Scholar

4. J. Dübendorfer, R. E. Kunz, G. Jobst, I. Moser, and G. Urban. Integrated optical pH sensor using replicated chirped grating coupler sensor chips. Sensors and Actuators B, 50:210–219, 1998. 10.1016/S0925-4005(98)00238-X. Search in Google Scholar

5. K. Deng. Force-compensated hydrogel-based pH sensors. PhD thesis, Fakultät Elektrotechnik, TU Dresden, 2016. Search in Google Scholar

6. A. Ehrenhofer, M. Elstner, and T. Wallmersperger. Normalization of hydrogel swelling behavior for sensoric and actuatoric applications. Sensors and Actuators B, 55:1343–1353, 2017. 10.1016/j.snb.2017.08.120. Search in Google Scholar

7. P. J. Flory. Principles of Polymer Chemistry. Cornell University Press, New York, 1953. Search in Google Scholar

8. M. Guenther, G. Gerlach, C. Corten, D. Kuckling, M. Mueller, Z. Shi, J. Sorber, and K.-F. Arndt. Application of polyelectrolytic temperature-responsive hydrogels in chemical sensors. Macromolecular Symposia, 254(1):314–321, 2007. 10.1002/masy.200750846. Search in Google Scholar

9. A. T. Krause, S. Zschoche, M. Rohn, C. Hempel, A. Richter, D. Appelhans, and B. Voit. Swelling behavior of bisensitive interpenetrating polymer networks for microfluidic applications. Soft Matter, 12:5529–5536, 2016. 10.1039/C6SM00720A. Search in Google Scholar

10. L. Krause. Vergleich von Kompensations- und Ausschlagprinzip am Beispiel der Wägetechnik. Technisches Messen, 71(12):643–650, 2004. 10.1524/teme.71.12.643.54697. Search in Google Scholar

11. D. Kuckling, A. Richter, and K.-F. Arndt. Temperature and pH-dependent swelling behavior of poly(n-isopropylacrylamide) copolymer hydrogels and their use in flow control. Macromolecular Materials and Engineering, 288(2):144–151, feb 2003. 10.1002/mame.200390007. Search in Google Scholar

12. D. Myung, D. Waters, M. Wiseman, P. Duhamel, J. Noolandi, C. N. Ta, and C. W. Frank. Progress in the development of interpenetrating polymer network hydrogels. Polymers for Advanced Technologies, 19(6):647–657, 2008. 10.1002/pat.1134. Search in Google Scholar

13. K. Reif, editor. OttomotorManagement – Steuerung, Regelung und Überwachung. Springer Fachmedien, Wiesbaden, 4 edition, 2014. Search in Google Scholar

14. A. Richter, A. Bund, M. Keller, and K.-F. Arndt. Characterization of a microgravimetric sensor based on pH sensitive hydrogels. Sensors and Actuators B, 99:579–585, 2004. 10.1016/j.snb.2004.01.011. Search in Google Scholar

15. A. Richter, G. Paschew, S. Klatt, J. Lienig, K.-F. Arndt, and H.-J. P. Adler. Review on hydrogel-based ph sensors and microsensors. Sensors, 8(1):561–581, 2008. 10.3390/s8010561. Search in Google Scholar

16. S. Binder, A. T. Krause, and G. Gerlach. Reduktion der Ansprechzeit Hydrogel-basierter Sensoren. 13. Dresdner Sensor-Symposium, pages 254–258, 2017. 10.5162/13dss2017/p3.05. Search in Google Scholar

17. V. Schulz. Advanced Hydrogel-based Chemical Microsensors. PhD thesis, Fakultät Elektrotechnik, TU Dresden, 2013. Search in Google Scholar

18. V. Schulz, M. Guenther, G. Gerlach, J. Magda, and F. Solzbacher. Piezoresistive pH microsensors based on stimuli-sensitive polyelectrolyte hydrogels. Technisches Messen, 77(3):179–186, 2010. 10.1524/teme.2010.0045. Search in Google Scholar

19. T. Tanaka and D. Fillmore. Kinetics of swelling of gels. The Journal of Chemical Physics, 70(3):1214–1218, 1979. 10.1063/1.437602. Search in Google Scholar

20. S. Tierney, S. Volden, and B. Stokke. Glucose sensors based on a responsive gel incorporated as a fabry-perot cavity on a fiber-optic readout platform. Biosensors and Bioelectronics, 24(7), 2009. 10.1016/j.bios.2008.10.014. Search in Google Scholar

21. H. Unbehauen. Regelungstechnik I. Vieweg+Teubner, Wiesbaden, 15 edition, 2008. Search in Google Scholar

22. X. Zhang and C. Chu. Influence of polyelectrolyte on the thermosensitive property of pnipaam-based copolymer hydrogels. Journal of Materials Science, 18(9):1771–1779, 2007. 10.1007/s10856-007-3040-7. Search in Google Scholar

Received: 2019-01-04
Accepted: 2019-02-25
Published Online: 2019-03-22
Published in Print: 2019-04-04

© 2019 Walter de Gruyter GmbH, Berlin/Boston