Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag February 23, 2019

High-speed laser interferometric distance sensor with reference mirror oscillating at ultrasonic frequencies

Laserinterferometrischer Hochgeschwindigkeits-Abstandssensor mit oszillierendem Referenzspiegel im Ultraschallbereich
  • Sebastian Hagemeier

    M.Sc. Sebastian Hagemeier is a research assistant in Measurement Technology Group of University of Kassel, Faculty of Electrical Engineering and Computer Science. Research interest: Multisensor measuring system for topography sensors, Fiber optic sensors, Coherence scanning interferometry (CSI).

    EMAIL logo
    , Stanislav Tereschenko

    Dr.-Ing. Stanislav Tereschenko is a research assistant in Measurement Technology Group of University of Kassel, Faculty of Electrical Engineering and Computer Science. Research interest: Coherence scanning interferometry (CSI), Vibration compensation in CSI, Signal processing in CSI and laser interferometry.

    and Peter Lehmann

    Prof. Dr.-Ing. habil. Peter Lehmann is head of the Measurement Technology Group of University of Kassel, Faculty of Electrical Engineering and Computer Science. Research interest: Optical metrology, Interferometry, Fiber optic sensors.

From the journal tm - Technisches Messen

Abstract

Optical measurement systems are an important part of the portfolio of 3D topography sensors. By precise, contactless and rapid measurements these sensors constitute an alternative to tactile instruments. In this contribution the principle of a laser interferometric distance sensor is presented, which in combination with lateral scan axes acts as a topography sensor and also as distance sensor for the compensation of vibrations in a coherence scanning Linnik interferometer. An advantage of this distance sensor is its high acquisition rate of height values, which in case of working as a topography sensor enables high scan velocities as it is demonstrated at a chirp standard measured with a scan velocity of 80 mm/s. This is much higher than the scan velocity of tactile instruments, which are typically limited up to 1 mm/s. In addition, the compensation of vibration disturbances demonstrates the capability of the fast distance measurement.

In contrast to other existing high-speed point sensors the relevant components are mass products. This keeps the costs of the sensor setup in a limited range. Furthermore, the sensor shows potential of much higher measurement rates than 116 kHz provided by the sensor used here.

Zusammenfassung

Optische Messsysteme bilden einen wichtigen Bestandteil des Portfolios an 3D-Topographiesensoren. Durch präzise, berührungslose und schnelle Messungen stellen diese Sensoren eine Alternative zu taktilen Tastern dar. In diesem Beitrag wird das Prinzip eines laserinterferometrischen Abstandssensors vorgestellt, welcher in Kombination mit lateralen Scanachsen als Topographiesensor und ebenso als Abstandssensor zur Kompensation von Vibrationen in einem Linnik-Interferometer dient. Ein Vorteil dieses Abstandssensors ist seine hohe Erfassungsrate von Höhenwerten, welche beim Einsatz als Topographiesensor hohe Scangeschwindigkeiten ermöglicht, wie durch eine Messung an einem Chirpnormal mit einer Scangeschwindigkeit von 80 mm/s gezeigt wird. Diese liegt deutlich über der Scangeschwindigkeit von taktilen Tastschnittgeräten, welche typischerweise auf 1 mm/s begrenzt sind. Die Kompensation von Störschwingungen demonstriert zusätzlich die Möglichkeiten, die sich aus der schnellen Abstandsmessung ergeben.

Im Vergleich zu anderen existierenden Hochgeschwindigkeitspunktsensoren sind die relevanten Bauteile des Sensors Massenprodukte. Dies hält die Kosten des Sensors in engen Grenzen. Des Weiteren verfügt der hier präsentierte Sensor über Potenzial zur Erhöhung der Messdatenrate auf deutlich über 116 kHz.

About the authors

Sebastian Hagemeier

M.Sc. Sebastian Hagemeier is a research assistant in Measurement Technology Group of University of Kassel, Faculty of Electrical Engineering and Computer Science. Research interest: Multisensor measuring system for topography sensors, Fiber optic sensors, Coherence scanning interferometry (CSI).

Stanislav Tereschenko

Dr.-Ing. Stanislav Tereschenko is a research assistant in Measurement Technology Group of University of Kassel, Faculty of Electrical Engineering and Computer Science. Research interest: Coherence scanning interferometry (CSI), Vibration compensation in CSI, Signal processing in CSI and laser interferometry.

Peter Lehmann

Prof. Dr.-Ing. habil. Peter Lehmann is head of the Measurement Technology Group of University of Kassel, Faculty of Electrical Engineering and Computer Science. Research interest: Optical metrology, Interferometry, Fiber optic sensors.

References

1. Uwe Brand, Lutz Doering, Sai Gao, Thomas Ahbe, Sebastian Buetefisch, Zhi Li, Andre Felgner, Rudolf Meess, Karla Hiller, Erwin Peiner and et al., Sensors and calibration standards for precise hardness and topography measurements in micro-and nanotechnology, VDE, GMM-Workshop 6 (2016), 1–5.10.1117/12.2179455Search in Google Scholar

2. Tim Dabbs and Monty Glass, Fiber-optic confocal microscope: FOCON, Applied Optics 31 (1992), 3030–3035.10.1364/AO.31.003030Search in Google Scholar PubMed

3. Peter de Groot, Design of error-compensating algorithms for sinusoidal phase shifting interferometry, Applied Optics 48 (2009), 6788–6796.10.1364/AO.48.006788Search in Google Scholar PubMed

4. Peter de Groot, Principles of interference microscopy for the measurement of surface topography, Advances in Optics and Photonics 7 (2015), 1–65.10.1364/AOP.7.000001Search in Google Scholar

5. Peter J De Groot, Extending the unambiguous range of two-color interferometers, Applied Optics 33 (1994), 5948–5953.10.1364/AO.33.005948Search in Google Scholar PubMed

6. Frank Depiereux, Peter Lehmann, Tilo Pfeifer and Robert Schmitt, Fiber-optical sensor with miniaturized probe head and nanometer accuracy based on spatially modulated low-coherence interferogram analysis, Applied Optics 46 (2007), 3425–3431.10.1364/AO.46.003425Search in Google Scholar PubMed

7. DIN EN ISO 3274, Geometrical Product Specifications (GPS) – Surface texture: Profile method – Nominal characteristics of contact (stylus) instruments (1996).Search in Google Scholar

8. Lutz Doering, Uwe Brand, Sebastian Bütefisch, Thomas Ahbe, Thomas Weimann, Erwin Peiner and Thomas Frank, High-speed microprobe for roughness measurements in high-aspect-ratio microstructures, Measurement Science and Technology 28 (2017), 034009.10.1088/1361-6501/28/3/034009Search in Google Scholar

9. Konstantinos Falaggis, David P Towers and Catherine E Towers, Method of excess fractions with application to absolute distance metrology: theoretical analysis, Applied Optics 50 (2011), 5484–5498.10.1364/AO.50.005484Search in Google Scholar PubMed

10. Konstantinos Falaggis, David P Towers and Catherine E Towers, Unified theory of phase unwrapping approaches in multiwavelength interferometry, SPIE Proceedings 8011 (2011), 80117.10.1117/12.902646Search in Google Scholar

11. Min Gu and CJR Sheppard, Signal level of the fibre-optical confocal scanning microscope, Journal of Modern Optics 38 (1991), 1621–1630.10.1080/09500349114551771Search in Google Scholar

12. Philipp Günther, Thorsten Pfister, Lars Büttner and Jürgen Czarske, Laser-Doppler-Distanzsensor mit Phasenauswertung zur Messung von Position und Form rotierender Objekte, tm-Technisches Messen 77 (2010), 479–485.10.1524/teme.2010.0030Search in Google Scholar

13. Sebastian Hagemeier and Peter Lehmann, Multisensorisches Messsystem zur Untersuchung der Übertragungseigenschaften von Topographiesensoren, tm-Technisches Messen 85 (2018), 380–394.10.1515/teme-2017-0138Search in Google Scholar

14. Sebastian Hagemeier, Markus Schake and Peter Lehmann, Sensor characterization by comparative measurements using a multisensor measuring system, Journal of Sensors and Sensor Systems (to be published).Search in Google Scholar

15. Hans-Joachim Jordan, M Wegner and H Tiziani, Highly accurate non-contact characterization of engineering surfaces using confocal microscopy, Measurement Science and Technology 9 (1998), 1142.10.1088/0957-0233/9/7/023Search in Google Scholar

16. Shigeharu Kimura and Tony Wilson, Confocal scanning optical microscope using single-mode fiber for signal detection, Applied Optics 30 (1991), 2143–2150.10.1364/AO.30.002143Search in Google Scholar PubMed

17. Holger Knell, Sören Laubach, Gerd Ehret and Peter Lehmann, Continuous measurement of optical surfaces using a line-scan interferometer with sinusoidal path length modulation, Optics Express 22 (2014), 29787–29798.10.1364/OE.22.029787Search in Google Scholar PubMed

18. Herwig Kogelnik and Tingye Li, Laser beams and resonators, Applied Optics 5 (1966), 1550–1567.10.1364/AO.5.001550Search in Google Scholar PubMed

19. Rolf Krüger-Sehm, Peter Bakucz, Lena Jung and Harald Wilhelms, Chirp-Kalibriernormale für Oberflächenmessgeräte (Chirp calibration standards for surface measuring instruments), tm-Technisches Messen 74 (2007), 572–576.10.1524/teme.2007.74.11.572Search in Google Scholar

20. Peter Lehmann, Peter Lücke, Jürgen Mohr, Carlos Javier Moran-Iglesias, Wolfgang Osten, Aiko Ruprecht and Sven Schönfelder, Optical measuring head, US patent US 7,486,394 B2, 2009.Search in Google Scholar

21. W Lyda, M Gronle, D Fleischle, F Mauch and W Osten, Advantages of chromatic-confocal spectral interferometry in comparison to chromatic confocal microscopy, Measurement Science and Technology 23 (2012), 054009.10.1088/0957-0233/23/5/054009Search in Google Scholar

22. Daniel Malacara, Optical shop testing, John Wiley & Sons, 2007.10.1002/9780470135976Search in Google Scholar

23. Thorsten Pfister, Lars Büttner and Jürgen Czarske, Laser Doppler sensor employing a single fan-shaped interference fringe system for distance and shape measurement of laterally moving objects, Applied optics 48 (2009), 140–154.10.1364/AO.48.000140Search in Google Scholar

24. Yun-Jiang Rao and David A Jackson, Recent progress in fibre optic low-coherence interferometry, Measurement Science and Technology 7 (1996), 981.10.1088/0957-0233/7/7/001Search in Google Scholar

25. Osami Sasaki and Hirokazu Okazaki, Sinusoidal phase modulating interferometry for surface profile measurement, Applied Optics 25 (1986), 3137–3140.10.1364/AO.25.003137Search in Google Scholar PubMed

26. Markus Schake and Peter Lehmann, Anwendungsorientiertes Verfahren zur Eindeutigkeitsbereichserweiterung eines fasergekoppelten Zweiwellenlaengen-Interferometers, tm-Technisches Messen 83 (2016), 192–200.10.1515/teme-2015-0125Search in Google Scholar

27. Markus Schake, Markus Schulz and Peter Lehmann, High-resolution fiber-coupled interferometric point sensor for micro-and nano-metrology, tm-Technisches Messen 82 (2015), 367–376.10.1515/teme-2015-0006Search in Google Scholar

28. M Schulz and P Lehmann, Measurement of distance changes using a fibre-coupled common-path interferometer with mechanical path length modulation, Measurement Science and Technology 24 (2013), 065202.10.1088/0957-0233/24/6/065202Search in Google Scholar

29. M Schulz and P Lehmann, Fasergekoppelter High-Speed-Sensor zum Messen optischer Funktionsflächen, GMA/ITG-Fachtagung Sensoren und Messsysteme 18 (2016), 411–417.10.5162/sensoren2016/6.1.1Search in Google Scholar

30. Jörg Seewig, Matthias Eifler and Georg Wiora, Unambiguous evaluation of a chirp measurement standard, Surface Topography: Metrology and Properties 2 (2014), 045003.10.1088/2051-672X/2/4/045003Search in Google Scholar

31. Sidney A Self, Focusing of spherical Gaussian beams, Applied optics 22 (1983), 658–661.10.1364/AO.22.000658Search in Google Scholar PubMed

32. Sucheta Sharma, Peter Eiswirt and Jürgen Petter, Electro optic sensor for high precision absolute distance measurement using multiwavelength interferometry, Optics Express 26 (2018), 3443–3451.10.1364/OE.26.003443Search in Google Scholar PubMed

33. Klaus-Dieter Sommer and Bernd RL Siebert, Praxisgerechtes Bestimmen der Messunsicherheit nach GUM (Practical Determination of the Measurement Uncertainty under GUM), tm–Technisches Messen 71 (2004), 52–66.10.1524/teme.71.2.52.27068Search in Google Scholar

34. Przemyslaw Struk, Sylwester Bargiel, Quentin AA Tanguy, Christophe Gorecki, Huikai Xie, Ravinder Chutani, Nicolas Passilly and Alain Billard, The SS-OCT endomicroscopy probe based on MOEMS Mirau micro-interferometer for early stomach cancer detection, SPIE Proceedings 10678 (2018), 1067807.10.1117/12.2311298Search in Google Scholar

35. Stanislav Tereschenko, Digitale Analyse periodischer und transienter Messsignale anhand von Beispielen aus der optischen Präzisionsmesstechnik, Ph.D. thesis, University of Kassel, Germany, 2018.Search in Google Scholar

36. Stanislav Tereschenko and Peter Lehmann, Inline-fähige Weißlichtinterferometrie mit integrierter Schwingungskompensation/Inline scanning white-light interferomety with integrated vibration compensation, tm-Technisches Messen 85 (2018), 14–20.10.1515/teme-2018-0025Search in Google Scholar

37. Stanislav Tereschenko, Peter Lehmann, Lisa Zellmer and Angelika Brueckner-Foit, Passive vibration compensation in scanning white-light interferometry, Applied Optics 55 (2016), 6172–6182.10.1364/AO.55.006172Search in Google Scholar PubMed

38. Christopher Willis, Patrick L Poole, Kramer U Akli, Douglass W Schumacher and Richard R Freeman, A confocal microscope position sensor for micron-scale target alignment in ultra-intense laser-matter experiments, Review of Scientific Instruments 86 (2015), 053303.10.1063/1.4921554Search in Google Scholar PubMed

39. QM Zhang, WY Pan and Leslie E Cross, Laser interferometer for the study of piezoelectric and electrostrictive strains, Journal of Applied Physics 63 (1988), 2492–2496.10.1063/1.341027Search in Google Scholar

Received: 2019-01-22
Accepted: 2019-02-03
Published Online: 2019-02-23
Published in Print: 2019-03-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.2.2024 from https://www.degruyter.com/document/doi/10.1515/teme-2019-0012/html
Scroll to top button