Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag August 21, 2019

State-of-the-art and future trends in soft magnetic materials characterization with focus on electric machine design – Part 2

Stand der Technik und Trends im Bereich der Charakterisierung weichmagnetischer Materialien mit Fokus auf den Entwurf elektrischer Maschinen – Teil 2
Gerd Bramerdorfer, Martin Kitzberger, Daniel Wöckinger, Branko Koprivica ORCID logo and Stan Zurek
From the journal tm - Technisches Messen

Abstract

The first part of this two-part article is about a retrospective view of material characterization, starting with the work of J. Epstein around the year 1900 and respective basic explanations. Consequently, the work presented herein is about the current state-of-the-art, recent developments, and future trends in characterization of ferromagnetic materials. Modeling is in fact a type of characterization, in a phenomenological and mathematical sense, and therefore it is treated with due attention in this article. Quantifying the properties of soft magnetic materials retains significant scientific attention. Thanks to new optimization techniques and advances in numerical evaluation, modern electromagnetic devices feature high utilization. Classical models exhibit assumptions that do not allow modern machine or device characterization with high accuracy. In this manuscript, typically applied techniques and recent incremental improvements, as well as newly developed models are introduced and discussed. Moreover, the significant impact of manufacturing on the materials’ characteristics and its quantification is illustrated. Within this article, a broad overview of the state-of-the-art as well as recent advances and future trends in soft magnetic material characterization is presented. Thus, it is a valuable reading for beginners and experts, from academia and industry alike.

Zusammenfassung

Der erste Teil dieses zweiteiligen Artikels handelt von den anfänglichen Werken von J. Epstein um 1900 und einleitenden Erklärungen zu gängigen Messvorrichtungen. Darauf aufbauend werden hier neueste Entwicklungen und zukünftige Trends im Bereich der Materialcharakterisierung präsentiert. Die Quantifizierung der Eigenschaften weichmagnetischer Materialien erfuhr in letzter Zeit eine gesteigerte Bedeutung. Aufgrund neuer Optimierungstechniken und Fortschritten im Bereich numerischer Verfahren, werden heutzutage höchsteffiziente elektromagnetische Apparate entwickelt. Klassische Modellierungsverfahren wurden auf der Basis von grundlegenden Annahmen, wie sinusförmigen Flussdichteverläufen, entwickelt. Diese Annahmen sind heutzutage nicht mehr im vollen Umfang zutreffend, weshalb eine genaue Bewertung der Effizienz und Qualität elektrischer Maschinen oder Aktuatoren nicht mehr möglich ist. Dieser Artikel behandelt typische Modellierungsverfahren, aktuelle Verbesserungsansätze von etablierten Modellen und auch von Grund auf neu entwickelte Techniken. Überdies wird der signifikante Einfluss der Materialbearbeitung auf die elektromagnetischen Eigenschaften und folglich auf die Performanz von Aktuatoren und elektrischen Maschinen thematisiert. Jüngste Anstrengungen zu dessen Berücksichtigung im Entwurfsprozess werden aufgezeigt. Zusammenfassend gibt dieser Artikel einen profunden Überblick über den aktuellen Stand der Technik, sowie jüngste Verbesserungen und zukünftige Trends in der Charakterisierung weichmagnetischer Materialien. Er ist daher sowohl für Neueinsteiger, als auch für Experten, sowie für Personen aus der akademischen Forschung, aber auch für Ingenieure aus der industriellen Praxis wertvoll.

Funding statement: This work has been supported by the COMET-K2 “Center for Symbiotic Mechatronics” of the Linz Center of Mechatronics (LCM) funded by the Austrian federal government and the federal state of Upper Austria.

References

1. D. Andessner, R. Kobler, J. Passenbrunner, and W. Amrhein. Measurement of the magnetic characteristics of soft magnetic materials with the use of an iterative learning control algorithm. 2011 IEEE Vehicle Power and Propulsion Conference, VPPC 2011, pages 1–6, 2011.Search in Google Scholar

2. M. Bali, H. De Gersem, and A. Muetze. Finite-element modeling of magnetic material degradation due to punching. IEEE Transactions on Magnetics, 50(2):745–748, 2014.10.1109/TMAG.2013.2283967Search in Google Scholar

3. M. Bali, H. De Gersem, and A. Muetze. Determination of Original Nondegraded and Fully Degraded Magnetic Characteristics of Material Subjected to Laser Cutting. IEEE Transactions on Industry Applications, 53(5):4242–4251, 2017.10.1109/TIA.2017.2696479Search in Google Scholar

4. M. Bali and A. Muetze. Influences of CO2 Laser, FKL Laser, and Mechanical Cutting on the Magnetic Properties of Electrical Steel Sheets. IEEE Transactions on Industry Applications, 51(6):4446–4454, 2015.10.1109/TIA.2015.2453136Search in Google Scholar

5. M. Bali and A. Muetze. Modeling the Effect of Cutting on the Magnetic Properties of Electrical Steel Sheets. IEEE Transactions on Industrial Electronics, 64(3):2547–2556, 2017.10.1109/TIE.2016.2589920Search in Google Scholar

6. M. Bali and A. Muetze. The degradation depth of non-grain oriented electrical steel sheets of electric machines due to mechanical and laser cutting: A state-of-the-art review. IEEE Transactions on Industry Applications, 55(1):366–375, 2019.10.1109/TIA.2018.2868033Search in Google Scholar

7. A. Benabou, S. Clénet, and F. Piriou. Comparison of Preisach and Jiles-Atherton models to take into account hysteresis phenomenon for finite element analysis. Journal of Magnetism and Magnetic Materials, 2003.10.1016/S0304-8853(02)01463-4Search in Google Scholar

8. A.J. Bergqvist. A simple vector generalization of the Jiles-Atherton model of hysteresis. IEEE Transactions on Magnetics, 32(5):4213–4215, 1996.10.1109/20.539337Search in Google Scholar

9. G. Bertotti. Physical interpretation of eddy current losses in ferromagnetic materials. I. Theoretical considerations. Journal of Applied Physics, 57(6):2110–2117, mar 1985.10.1063/1.334404Search in Google Scholar

10. R. Bojoi, A. Cavagnino, Z. Gmyrek, and M. Lefik. Post-annealing behaviors of small-size synchronous reluctance motors. In IECON 2016 – 42nd Annual Conference of the IEEE Industrial Electronics Society, pages 1732–1737. IEEE, oct 2016.10.1109/IECON.2016.7793739Search in Google Scholar

11. G. Bramerdorfer and D. Andessner. Accurate and Easy-to-Obtain Iron Loss Model for Electric Machine Design. IEEE Transactions on Industrial Electronics, 64(3):2530–2537, 2017.10.1109/TIE.2016.2583402Search in Google Scholar

12. G. Bramerdorfer, S. Silber, G. Weidenholzer, and W. Amrhein. Comprehensive cost optimization study of high-efficiency brushless synchronous machines. Proceedings of the 2013 IEEE International Electric Machines and Drives Conference, IEMDC 2013, 2017(January):1126–1131, 2013.10.1109/IEMDC.2013.6556291Search in Google Scholar

13. J.R. Brauer. Simple Equations for the Magnetization and Reluctivity Curves of Steel. IEEE Transactions on Magnetics, 11(1):81, 1975.10.1109/TMAG.1975.1058555Search in Google Scholar

14. L. Chang, T.M. Jahns, and R. Blissenbach. Characterization and modeling of soft magnetic materials for improved estimation of pwm-induced iron loss. In 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pages 5371–5378, 09 2018.10.1109/ECCE.2018.8557438Search in Google Scholar

15. C.C. Chiang, M.F. Hsieh, Y.H. Li, and M.C. Tsai. Impact of Electrical Steel Punching Process on the Performance of Switched Reluctance Motors. IEEE Transactions on Magnetics, 51(11):1–4, 2015.10.1109/TMAG.2015.2449661Search in Google Scholar

16. M. Cossale, G. Bramerdorfer, G. Goldbeck, M. Kitzberger, D. Andessner, and W. Amrhein. Modeling the Degradation of Relative Permeability in Soft Magnetic Materials. In 2018 IEEE Transportation and Electrification Conference and Expo, ITEC 2018, pages 744–748, 2018.10.1109/ITEC.2018.8450202Search in Google Scholar

17. M. Cossale, M. Kitzberger, G. Goldbeck, G. Bramerdorfer, D. Andessner, and W. Amrhein. Investigation and Modeling of Local Degradation in Soft Magnetic Materials. In 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pages 5365–5370. IEEE, sep 2018.10.1109/ECCE.2018.8558258Search in Google Scholar

18. P. Diez. Symmetric invertible bh curves using piecewise linear rationals. IEEE Transactions on Magnetics, 53(6):1–3, June 2017.10.1109/TMAG.2017.2663105Search in Google Scholar

19. P. Diez and J.P. Webb. A rational approach to bh curve representation. IEEE Transactions on Magnetics, 52(3):1–4, March 2016.10.1109/TMAG.2015.2488360Search in Google Scholar

20. S. Elfgen, S. Steentjes, S. Böhmer, D. Franck, and K. Hameyer. Continuous Local Material Model for Cut Edge Effects in Soft Magnetic Materials. IEEE Transactions on Magnetics, 2016.10.1109/TMAG.2015.2511451Search in Google Scholar

21. S. Elfgen, S. Steentjes, S. Bohmer, D. Franck, and K. Hameyer. Influences of Material Degradation Due to Laser Cutting on the Operating Behavior of PMSM Using a Continuous Local Material Model. IEEE Transactions on Industry Applications, 53(3):1978–1984, may 2017.10.1109/TIA.2017.2665338Search in Google Scholar

22. M. Enokizono. Vector magnetic property and magnetic characteristic analysis by vector magneto-hysteretic E and S model. IEEE Transactions on Magnetics, 2009.10.1109/TMAG.2009.2012659Search in Google Scholar

23. J. Epstein. Die magnetische prufung von eisenblech. Elektrotechnische Zeitschrift, pages 303–307, 1900.Search in Google Scholar

24. B. Forghani, E.M. Freeman, D.A. Lowther, and P.P. Silvester. Interactive Modelling of Magnetisation Curves. IEEE Transactions on Magnetics, 18(6):1070–1072, 1982.10.1109/TMAG.1982.1062053Search in Google Scholar

25. Z. Gmyrek and A. Cavagnino. Influence of punching, welding, and clamping on magnetic cores of fractional kilowatt motors. IEEE Transactions on Industry Applications, 54(5):4123–4132, Sep. 2018.10.1109/TIA.2018.2829769Search in Google Scholar

26. Z. Gmyrek, A. Cavagnino, and L. Ferraris. Estimation of the Magnetic Properties of the Damaged Area Resulting From the Punching Process: Experimental Research and FEM Modeling. IEEE Transactions on Industry Applications, 49(5):2069–2077, sep 2013.10.1109/TIA.2013.2261041Search in Google Scholar

27. P. Goes, E. Hoferlin, and M. De Wulf. Calculating Iron Losses Taking Into Account Effects of Manufacturing Processes. Journal of The Electrochemical Society, 104(12):256C, 1957.10.1149/1.2428454Search in Google Scholar

28. G. Goldbeck, M. Cossale, M. Kitzberger, G. Bramerdorfer, D. Andessner, and W. Amrhein. Numerical Implementation of Local Degradation Profiles in Soft Magnetic Materials. In Proceedings – 2018 23rd International Conference on Electrical Machines, ICEM 2018, pages 1037–1043, 2018.10.1109/ICELMACH.2018.8506778Search in Google Scholar

29. T. Hülsmann. Nonlinear Material Curve Modeling and Sensitivity Analysis for MQS-Problems. PhD thesis, Bergische Universität Wuppertal, 2012.Search in Google Scholar

30. International Electrotechnical Commission. Magnetic materials – part 2: Methods of measurement of the magnetic properties of electrical steel strip and sheet by means of an epstein frame, June 2008.Search in Google Scholar

31. International Electrotechnical Commission. Magnetic materials – part 4: Methods of measurement of the magnetic properties of magnetic sheet and strip by means of a single sheet tester, April 2010.Search in Google Scholar

32. International Electrotechnical Commission. Magnetic materials – part 6: Methods of measurement of the magnetic properties of magnetically soft metallic and powder materials at frequencies in the range 20 Hz to 100 kHz by the use of ring specimens, May 2018.Search in Google Scholar

33. S. Jacobs, D. Hectors, F. Henrotte, M. Hafner, M.H. Gracia, K. Hameyer, and P. Goes. Magnetic material optimization for hybrid vehicle PMSM drives. World Electric Vehicle Journal, 2009.10.3390/wevj3040875Search in Google Scholar

34. D.C. Jiles and D.L. Atherton. Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 1986.10.1016/0304-8853(86)90066-1Search in Google Scholar

35. P. Jordan. Die ferromagnetischen Konstanten für schwache Wechselfelder. Elektr. Nach. Techn., 1:8, 1924.Search in Google Scholar

36. A. Krings and J. Soulard. Overview and Comparison of Iron Loss Models for Electrical Machines. Journal of Electrical Engineering, 2010.Search in Google Scholar

37. J.C. Lagarias, J.A. Reeds, M.H. Wright, and P.E. Wright. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal of Optimization, 9(1):112–147, 1998.10.1137/S1052623496303470Search in Google Scholar

38. N. Leuning, S. Steentjes, H.A. Weiss, W. Volk, and K. Hameyer. Magnetic Material Deterioration of Non-Oriented Electrical Steels as a Result of Plastic Deformation Considering Residual Stress Distribution. IEEE Transactions on Magnetics, 54(11):1–5, nov 2018.10.1109/TMAG.2018.2848365Search in Google Scholar

39. J. Li, T. Abdallah, and C.R. Sullivan. Improved calculation of core loss with nonsinusoidal waveforms. In Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting, volume 4, pages 2203–2210. IEEE, 2001.Search in Google Scholar

40. G. Loisos and A.J. Moses. Effect of mechanical and Nd:YAG laser cutting on magnetic flux distribution near the cut edge of non-oriented steels. Journal of Materials Processing Technology, 2005.10.1016/j.jmatprotec.2004.07.061Search in Google Scholar

41. I.D. Mayergoyz. Vector Preisach hysteresis models (invited). Journal of Applied Physics, 1988.10.1063/1.340926Search in Google Scholar

42. I.D. Mayergoyz. Mathematical Models of Hysteresis and Their Applications. Elsevier, 2003.10.1016/B978-012480873-7/50005-0Search in Google Scholar

43. W.H.F. Murdoch. Magnetic Measurements. Nature, 96(2395):87–87, sep 1915.10.1038/096087c0Search in Google Scholar

44. H. Pfützner. Zur Bestimmung der Ummagnetisierungsverluste aus den Feldgrößen. Archiv für Elektrotechnik, 60(3):177–179, may 1978.10.1007/BF01578992Search in Google Scholar

45. N.C. Pop and O.F. Caltun. Jiles-Atherton magnetic hysteresis parameters identification. Acta Physica Polonica A, 120(3):491–496, 2011.10.12693/APhysPolA.120.491Search in Google Scholar

46. F. Preisach. Über die magnetische Nachwirkung. Zeitschrift für Physik, 1935.10.1007/BF01349418Search in Google Scholar

47. B. Sai Ram and S.V. Kulkarni. An isoparametric approach to model ferromagnetic hysteresis including anisotropy and symmetric minor loops. Journal of Magnetism and Magnetic Materials, 474:574–584, 2019.10.1016/j.jmmm.2018.09.052Search in Google Scholar

48. P. Rasilo, S. Steentjes, A. Belahcen, R. Kouhia, and K. Hameyer. Model for Stress-Dependent Hysteresis in Electrical Steel Sheets Including Orthotropic Anisotropy. IEEE Transactions on Magnetics, 53(6):1–4, 2017.10.1109/TMAG.2017.2659784Search in Google Scholar

49. J. Reinert, A. Brockmeyer, and R.W.A.A. De Doncker. Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation. IEEE Transactions on Industry Applications, 37(4):1055–1061, 2001.10.1109/28.936396Search in Google Scholar

50. B. Schauerte, S. Steentjes, N. Leuning, and K. Hameyer. A continuous parameter-based approach to model the effect of mechanical stress on the electromagnetic hysteresis characteristic. In 2018 IEEE International Magnetics Conference (INTERMAG), pages 1–5, April 2018.10.1109/INTMAG.2018.8508359Search in Google Scholar

51. R. Severns. HF-core losses for nonsinusoidal waveforms. In High Frequency Power Convertion Conference (HFPC), pages 140–148, 1991.Search in Google Scholar

52. H. Shimoji, M. Enokizono, T. Todaka, and T. Honda. A new modeling of the vector magnetic property. IEEE Transactions on Magnetics, 38(2):861–864, mar 2002.10.1109/20.996222Search in Google Scholar

53. S. Silber, G. Bramerdorfer, A. Dorninger, A. Fohler, J. Gerstmayr, W. Koppelstätter, D. Reischl, G. Weidenholzer, and S. Weitzhofer. Coupled optimization in MagOpt. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 230(4):291–299, 2015.10.1177/0959651815593420Search in Google Scholar

54. S. Silber, W. Koppelstätter, G. Weidenholzer, and G. Bramerdorfer. MagOpt – Optimization tool for mechatronic components. 14th International Symposium on Magnetic Bearings, 4:243–246, 2014.Search in Google Scholar

55. S. Silber, W. Koppelstätter, G. Weidenholzer, G. Segon, and G. Bramerdorfer. Reducing Development Time of Electric Machines with SyMSpace. In 2018 8th International Electric Drives Production Conference (EDPC), pages 1–5. IEEE, dec 2018.10.1109/EDPC.2018.8658312Search in Google Scholar

56. S. Steentjes, N. Leuning, J. Dierdorf, X. Wei, G. Hirt, H.A. Weiss, W. Volk, S. Roggenbuck, S. Korte-Kerzel, A. Stoecker, R. Kawalla, and K. Hameyer. Effect of the Interdependence of Cold Rolling Strategies and Subsequent Punching on Magnetic Properties of NO Steel Sheets. IEEE Transactions on Magnetics, 52(5):1–4, may 2016.10.1109/TMAG.2016.2516340Search in Google Scholar

57. C.P. Steinmetz. On the law of hysteresis. Proceedings of the IEEE, 72(2):197–221, 1984.10.1109/PROC.1984.12842Search in Google Scholar

58. T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor – a distributed job scheduler. In Thomas Sterling, editor, Beowulf Cluster Computing with Linux. MIT Press, October 2001.Search in Google Scholar

59. A. Van den Bossche, V.C. Valchev, and G.B. Georgiev. Measurement and loss model of ferrites with non-sinusoidal waveforms. In 2004 IEEE 35th Annual Power Electronics Specialists Conference, number 1, pages 4814–4818. IEEE, 2004.Search in Google Scholar

60. K. Venkatachalam, C.R. Sullivan, T. Abdallah, and H. Tacca. Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters. In 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proceedings, pages 36–41. IEEE, 2002.10.1109/CIPE.2002.1196712Search in Google Scholar

61. H.A. Weiss, P. Trober, R. Golle, S. Steentjes, N. Leuning, S. Elfgen, K. Hameyer, and W. Volk. Impact of Punching Parameter Variations on Magnetic Properties of Nongrain-Oriented Electrical Steel. IEEE Transactions on Industry Applications, 54(6):5869–5878, nov 2018.10.1109/TIA.2018.2853133Search in Google Scholar

62. P.R. Wilson, J.N. Ross, A.D. Brown, T. Kazmierski, and J. Baranowski. Efficient Mixed-Domain Behavioural Modeling of Ferromagnetic Hysteresis Implemented in VHDL-AMS 3. Implementing the Original Jiles-Atherton. Optimization, 44(0):4–5, 2004.Search in Google Scholar

63. R. Woehrnschimmel, A. Muetze, S. Ertl, H. Kapeller, O. Winter, and D. Horwatitsch. Simulating the change of magnetic properties of electrical steel sheets due to punching. In 2015 IEEE International Electric Machines & Drives Conference (IEMDC), pages 1324–1328. IEEE, may 2015.10.1109/IEMDC.2015.7409233Search in Google Scholar

64. T. Yamamoto and Y. Ohya. Single Sheet Tester for Measuring Core Losses and Permeabilities in a Silicon Steel Sheet. IEEE Transactions on Magnetics, 10(2):157–159, 1974.10.1109/TMAG.1974.1058306Search in Google Scholar

65. S.E. Zirka, Y.I. Moroz, S. Steentjes, K. Hameyer, K. Chwastek, S. Zurek, and R.G. Harrison. Dynamic magnetization models for soft ferromagnetic materials with coarse and fine domain structures. Journal of Magnetism and Magnetic Materials, 394:229–236, 2015.10.1016/j.jmmm.2015.06.082Search in Google Scholar

66. S. Zurek. Characterisation of Soft Magnetic Materials Under Rotational Magnetisation. CRC Press, Boca Raton: Taylor & Francis, CRC Press, nov 2017.10.1201/b22374Search in Google Scholar

Received: 2019-04-30
Accepted: 2019-06-23
Published Online: 2019-08-21
Published in Print: 2019-10-25

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow