Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag December 17, 2019

Stray light autocorrelation for the measurement of ultrashort laser pulses

Streulicht-Autokorrelation für die Messung ultrakurzer Laserpulse
  • Anne-Sophie Rother

    M.Sc. Anne-Sophie Rother graduated in Optics and Laser Engineering (B.Sc.) and Applied Physics (M.Sc.) at the University of Applied Sciences Koblenz and is currently working on her doctoral thesis since 2015.

    , Peter Kohns

    Prof. Dr. Peter Kohns obtained his doctoral degree from the University Bonn in 1993. For several years he worked as head of development in the optical industry. In 2000 he has become a professor at the RheinAhrCampus of the University of Applied Sciences Koblenz. His topics of research are laser material processing and laser spectroscopy.

    and Georg Ankerhold

    Prof. Dr. Georg Ankerhold obtained his doctoral degree from the Faculty of Physics at the Westfälische Wilhelms-Universität Münster and worked in a leading position for several years in the optical industry. Since 2003 he has been teaching atomic physics, laser physics, laser spectroscopy, and fiber optic technologies at the University of Applied Sciences Koblenz. His research is focused on laser spectroscopy and optical coherence tomography.

    EMAIL logo
From the journal tm - Technisches Messen

Abstract

Ultrashort laser pulses in the femtosecond range are of growing interest in medicine and micro material processing for industrial applications. The most interesting parameter is the pulse duration, which can only be measured by optical autocorrelation methods incorporating an optically nonlinear medium. Established methods mostly use monocrystalline beta barium borate (BBO) in transmission, exhibiting a high nonlinear conversion efficiency. However, this material is brittle, expensive and sophisticated in adjustment due to the necessary non-collinear phase matching. Since fiber-based high energy femtosecond laser systems become more and more achievable, the conversion efficiency of the nonlinear medium should no longer be seen as the restricting factor. Therefore, this research work discusses the suitability of several nonlinear media with differing translucency. Quartz, ammonium dihydrogen phosphate (ADP) and aluminum nitride (AlN) were compared in a standard autocorrelation setup and a novel versatile setup measuring frequency-doubled stray light. Best results were achieved with AlN, which appears to be a suitable and promising alternative material to BBO, reducing the expenses by two to three orders of magnitude.

Zusammenfassung

In der Medizin und der industriellen Mikromaterialbearbeitung ist in den letzten Jahren ein stetig zunehmendes Interesse an ultrakurzen Laserpulsen im Femtosekundenbereich zu beobachten. Von besonderem Interesse ist dabei die Pulsdauer, die nur mit Methoden der optischen Autokorrelation unter Verwendung eines optisch nichtlinearen Mediums ermittelt werden kann. Aufgrund seiner hohen nichtlinearen Konversionseffizienz wird dazu zumeist monokristallines Beta-Bariumborat (BBO) in Transmission verwendet. Dieses Material ist jedoch spröde, teuer und durch die nichtlineare Phasenanpassung sehr anspruchsvoll bei der Justage. Da fasergestützte Femtosekundenlaser mit hohen Pulsenergien zunehmend erschwinglicher werden, sollte die Konversionseffizienz eines nichtlinearen Mediums nicht länger als einschränkender Faktor gesehen werden. Im nachfolgenden Beitrag wird daher die Eignung vielversprechender nichtlinearer Medien mit unterschiedlicher Lichtdurchlässigkeit betrachtet. Quarz, Ammoniumdihydrogenphosphat (ADP) und Aluminiumnitrid (AlN) wurden in zwei Aufbauten anhand der Autokorrelationssignale ihres frequenzverdoppelten Streulichts verglichen. Das beste Ergebnis wurde für AlN erzielt, das eine vielversprechende Alternative zu BBO darzustellen scheint und den Kostenaufwand um zwei bis drei Größenordnungen reduziert.

About the authors

Anne-Sophie Rother

M.Sc. Anne-Sophie Rother graduated in Optics and Laser Engineering (B.Sc.) and Applied Physics (M.Sc.) at the University of Applied Sciences Koblenz and is currently working on her doctoral thesis since 2015.

Peter Kohns

Prof. Dr. Peter Kohns obtained his doctoral degree from the University Bonn in 1993. For several years he worked as head of development in the optical industry. In 2000 he has become a professor at the RheinAhrCampus of the University of Applied Sciences Koblenz. His topics of research are laser material processing and laser spectroscopy.

Georg Ankerhold

Prof. Dr. Georg Ankerhold obtained his doctoral degree from the Faculty of Physics at the Westfälische Wilhelms-Universität Münster and worked in a leading position for several years in the optical industry. Since 2003 he has been teaching atomic physics, laser physics, laser spectroscopy, and fiber optic technologies at the University of Applied Sciences Koblenz. His research is focused on laser spectroscopy and optical coherence tomography.

Acknowledgment

We gratefully thank CeramTec GmbH for kindly providing us with samples of aluminum nitride for our research.

References

1. A. Braun, R. F. Krillke, M. Frentzen, C. Bourauel, H. Stark, F. Schelle, “Heat generation caused by ablation of dental hard tissues with an ultrashort pulse laser (USPL) system”, Laser Med Sci, Springer London, vol. 30, no. 2, pp. 475–481, DOI: 10.1007/s10103-013-1344-z, 2015.Search in Google Scholar PubMed

2. M. Shomaker, D. Heinemann, S. Kalies, S. Willenbrock, S. Wagner, I. Nolte, T. Ripken, H. M. Escobar, H. Meyer, A. Heisterkamp, “Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine”, J. Nanobiotechnology, vol. 13, pp. 10-1–10-15, DOI: 10.1186/s12951-014-0057-1, 2015.Search in Google Scholar PubMed PubMed Central

3. J. Schille, L. Schneider, U. Loeschner, “Process optimization in high-average-power ultrashort pulse laser microfabrication: how laser process parameters influence efficiency, throughput and quality”, Appl. Phys. A, Springer Berlin Heidelberg, vol. 120, no. 3, pp. 847–855, DOI: 10.1007/s00339-015-9352-4, 2015.Search in Google Scholar

4. M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, S. Juodkazis, “Ultrafast laser processing of materials: from science to industry”, Light Sci. Appl., vol. 5, pp. 1–14, DOI: 10.1038/lsa.2016.133, 2016.Search in Google Scholar PubMed PubMed Central

5. M. Friedrich, S. Waechter, J. Giesecke, J. Bliedtner, J. P. Bergmann, “Investigations of surface processing of functional ceramics applying ultrashort laser pulses”, J. Laser Appl., vol. 29, no. 2, pp. 022502-1–022502-8, DOI: 10.2351/1.4983501, 2017.Search in Google Scholar

6. G. Piredda, S. Stroj, D. Ziss, J. Stangl, R. Trotta, J. Martín-Sánchez, A. Rastelli, “Micro-machining of PMN-PT Crystals with Ultrashort Laser Pulses”, Appl. Phys. A, Springer Berlin Heidelberg, vol. 125, pp. 201-1–201-11, DOI: 10.1007/s00339-019-2460-9, 2019.Search in Google Scholar

7. K. Miura, J. Qiu, T. Mitsuyu, K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses”, Opt. Lett., vol. 25, no. 6, pp. 408–410, DOI: 10.1364/OL.25.000408, 2000.Search in Google Scholar

8. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, S. Cao, B. Yu, “Direct writing three-dimensional Ba2TiSi2O8 crystalline pattern in glass with ultrashort pulse laser”, Appl. Phys. Lett., vol. 90, no. 18, pp. 181109-1–181109-3, DOI: 10.1063/1.2734919, 2007.Search in Google Scholar

9. A.-S. Rother, P. Kohns, G. Ankerhold, “Scattered second harmonic generation on ultrashort laser pulse processed zinc coatings”, J. Nonlinear Opt. Phys. Mater., vol. 27, no. 3, pp. 1850028-1–1850028-13, DOI: 10.1142/S0218863518500285, 2016.Search in Google Scholar

10. R. Trebino, “Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses”, Springer US, DOI: 10.1007/978-1-4615-1181-6, 2000.Search in Google Scholar

11. O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media”, Nat. Photon., vol. 5, pp. 372–377, DOI: 10.1038/NPHOTON.2011.72, 2011.Search in Google Scholar

12. S. K. Kurtz, T. T. Perry, “A Powder Technique for the Evaluation of Nonlinear Optical Materials”, J. Appl. Phys., vol. 39, no. 8, pp. 3798–3813, DOI: 10.1063/1.1656857, 1968.Search in Google Scholar

13. I. Aramburu, J. Ortega, C. L. Folcia, J. Etxebarria, “Second-harmonic generation in dry powders: A simple experimental method to determine nonlinear efficiencies under strong light scattering”, Appl. Phys. Lett., vol. 104, pp. 071107-1–071107-4, DOI: 10.1063/1.4866160, 2014.Search in Google Scholar

14. D. N. Nikogosyan, “Beta Barium Borate (BBO) – A Review of Its Properties and Applications”, Appl. Phys. A, vol. 52, no. 6, pp. 359–368, DOI: 10.1007/BF00323647, 1991.Search in Google Scholar

15. Y. X. Fan, R. C. Eckardt, R. L. Byer, C. Chen, A. D. Jiang, “Barium borate optical parametric oscillator”, IEEE J. Quantum Electron., vol. 25, no. 6, pp. 1196–1199, DOI: 10.1109/3.29247, 1989.Search in Google Scholar

16. S. Kurimura, M. Harada, K. Muramatsu, M. Ueda, M. Adachi, T. Yamada, T. Ueno, “Quartz revisits nonlinear optics: twinned crystal for quasi-phase matching”, Opt. Mater. Express, vol. 1, no. 7, pp. 1367–1375, DOI: 10.1364/OME.1.001367, 2011.Search in Google Scholar

17. A. Abdel-Kader, A. A. Ammar, S. I. Saleh, “Thermal behaviour of ammonium dihydrogen phosphate crystals in the temperature range 25–600 °C”, Thermochim. Acta, Elsevier, vol. 176, pp. 293–304, DOI: 10.1016/0040-6031(91)80285-Q, 1991.Search in Google Scholar

18. K. Hagimoto, A. Mito, “Determination of the second-order susceptibility of ammonium dihydrogen phosphate and a-quartz at 633 and 1064 nm”, Appl. Opt., vol. 34, no. 36, pp. 8276–8282, DOI: 10.1364/AO.34.008276, 1995.Search in Google Scholar PubMed

19. A. Abdel-Kader, A. A. Ammar, S. I. Saleh, “Thermal behaviour of ammonium dihydrogen phosphate crystals in the temperature range 25–600 °C”, JOM, vol. 50, no. 6, pp. 56–60, DOI: 10.1007/s11837-998-0130-z, 1998.Search in Google Scholar

20. GESTIS – Substance Database [Online]. Available: http://gestis.itrust.de/nxt/gateway.dll/gestis_de/ 004980.xml?f=templates$fn=default.htm$3.0 [2019, August 26]. IFA Institute for Occupational Safety and Health of the German Social Accident Insurance.Search in Google Scholar

21. X. Guo, C.-L. Zou, H. Jung, H. X. Tang, “On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes”, Phys. Rev. Lett., vol. 117, no. 12, pp. 123902-1–123902-5, DOI: 10.1103/PhysRevLett.117.123902, 2016.Search in Google Scholar PubMed

Received: 2019-08-28
Accepted: 2019-11-27
Published Online: 2019-12-17
Published in Print: 2020-05-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2023 from https://www.degruyter.com/document/doi/10.1515/teme-2019-0117/pdf
Scroll to top button