Abstract
Since 2011 gasoline is blended with bioethanol (5–10 Vol.-%) to comply with the biofuel quota required by law. To examine the influence of the bioethanol additive on the functionality of the fuel vapour restraint systems a suitable test facility is designed. This test facility enables automated long-term tests lasting several weeks. As a result, the adsorption behaviour of the activated carbon filters is examined by the used sensors for multiple ad- and desorption cycles even in case of multicomponent mixtures.
Zusammenfassung
Seit 2011 werden 5–10 Vol.-% Bioethanol dem fossilen Ottokraftstoff beigemischt, um die gesetzlich vorgeschriebene Biokraftstoffquote zu erfüllen. Um den Einfluss des Bioethanol-Zusatzes auf die Funktionstüchtigkeit der Kraftstoffdampfrückhaltesysteme untersuchen zu können, wurde eine geeignete Versuchsanlage konzipiert. Mit dieser Anlage sind automatisierte Langzeitmessungen über mehrere Wochen möglich, so dass das Adsorptionsverhalten des Aktivkohlefilters auch für ein Mehrkomponentengemisch mit Hilfe der verschiedenen Sensoren genau erfasst werden kann.
Funding source: Bundesministerium für Ernährung und Landwirtschaft
Award Identifier / Grant number: 1/22403015
Award Identifier / Grant number: 2/22403115
Funding statement: This work was financially supported by the Federal Ministry of Food and Agriculture (BMEL) on the basis of a decision by the German Parliament (Grant 1/22403015, 2/22403115).
About the authors

Mrs. Eva Schieferstein received a PhD degree in Physical Chemistry from the University Essen. Since 2001 she is a specialist for the topic „adsorption“ at the Fraunhofer Institute UMSICHT.

Dipl.-Ing. Karl Meller studied industrial engineering at the University of Applied Sciences of Münster. He works more than 20 years as a chemical engineer at Fraunhofer UMSICHT.

Mr. Juergen Graen-Heedfeld received a PhD degree in Chemical Engineering from the Technical University of Dortmund. Since 1991 he works as a scientist at the Fraunhofer-Institute for Environmental, Safety and Energy Technology UMSICHT in various scientific and engineering projects in terms of process engineering, safety engineering and transformation processes.

Since 1988, M. Ulrich Göbel has been working as a laboratory engineer at the Institute for Fluid- and Thermodynamics at the Faculty IV (Science and Technology), University of Siegen.

Ingo Schmitz received in 2006 his doctor’s degree in engineering at the Institute of Technical Thermodynamics (LTT) of the FAU-Erlangen/Nuremberg. From April 2007 until November 2011 he was senior scientist at the LTT. Since December 2011 he is akademischer Rat at the chair of Engineering Thermodynamics at the Faculty IV (Science and Technology), University of Siegen.

1981–84 Ass. Prof. Chemical Thermodynamics, Technical University Berlin (West). 1984–2006 Full Prof. Engineering Thermodynamics, University of Siegen, D-57076 Siegen. 1986–2014 Founding Editor in Chief, Journal of Non-Equilibrium Thermodynamics, W. de Gruyter, Berlin–New York.

Since 2010 is Prof. Dr.-Ing. Thomas Seeger full Professor for Engineering Thermodynamics at the Faculty IV (Science and Technology), University of Siegen.
References
1. U. Mohr. 1997. „Activated carbon canisters of automobiles”. Filtration & Separation 34, pp. 1016-1018.10.1016/S0015-1882(97)87275-8Search in Google Scholar
2. H. Kienle, E. Bäder. 1980. „Aktivkohle und ihre industrielle Anwendung”. (F. Enke Verlag, Stuttgart), pp. 162.Search in Google Scholar
3. Richtlinie 2009/28/EG des Europäischen Parlaments und des Rates vom 23. April 2009 zur Förderung der Nutzung von Energie aus erneuerbaren Quellen und zur Änderung und anschließenden Aufhebung der Richtlinien 2001/77/EG und 2003/30/EG; https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=celex%3A32009L0028.Search in Google Scholar
4. Renewable Energy Directive 2018/2001/EU; https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32018L2001.Search in Google Scholar
5. M. U. Göbel, M. Lange, K. Meller, A. Möller, E. Schieferstein, T. Seeger, J. Keller. 2014. „Koadsorptionsgleichgewichte von Kraftstoffdämpfen an feuchten Aktivkohlefiltern”. Chem. Ing. Tech. 86(1–2), pp. 58-66.10.1002/cite.201300061Search in Google Scholar
6. Directive 98/69/EC of the European Parliament and of the Council of 13 October 1998 relating to measures to be taken against air pollution by emissions from motor vehicles and amending Council Directive 70/220/EEC.Search in Google Scholar
7. A. C. Eckbreth. 1996. ”Laser Diagnostics for Combustion Temperature and Species”. 2nd ed. (Gordon and Breach).10.1007/978-94-009-1620-3_18Search in Google Scholar
8. D. A. Long. 1977. ”Raman Spectroscopy”. (McGraw-Hill International Book Company, London).Search in Google Scholar
9. J. Egermann, J. Jonuscheit, T. Seeger and A. Leipertz. 2001. ”Untersuchung von diodenlaserbasierten Mehrkomponenten-Konzentrationsmesssystemen zur Gasanalyse”. Technisches Messen 68, pp. 400-405.10.1524/teme.2001.68.9.400Search in Google Scholar
10. R. A. Hill, D. L. Hartley. 1974. ”Focused, multiple-pass cell for Raman scattering”. Appl. Opt. 13, pp. 186–192.10.1364/AO.13.000186Search in Google Scholar PubMed
11. H.-J. Daams, E. P. Hassel. 1983. ”Multipass cavity: collinear and self-focusing”. Appl. Opt. 22, p. 14.10.1364/AO.22.002066Search in Google Scholar PubMed
12. S. Schlüter, N. Popovska-Leipertz, T. Seeger, A. Leipertz. 2012. ”Gas sensor for volatile anesthetic agents based on Raman scattering”. Physics. Proc. 39, pp. 835-842.10.1016/j.phpro.2012.10.108Search in Google Scholar
13. S. Schlüter, T. Seeger, N. Popovska-Leipertz, A. Leipertz. 2014. ”Laserbasierte On-line-Analyse von Biogasen mit einer Raman-Sonde”. Technisches Messen 81, pp. 546–553.10.1515/teme-2014-1050Search in Google Scholar
14. R. W. Dibble, A. R. Masri and R. W. Bilger. 1987. ”The spontaneous Raman scattering technique applied to nonpremixed flames of methane”. Combust. Flame 67, pp. 189-206.10.1016/0010-2180(87)90095-2Search in Google Scholar
15. F. Rabenstein and A. Leipertz. 1988. ”One-dimensional, time-resolved Raman measurements in a sooting flame made with 355 nm excitation”. Appl. Opt. 37, pp. 4937-4943.10.1364/AO.37.004937Search in Google Scholar PubMed
16. S. Schorsch, J. Kiefer, S. Steuer, M. C. Weikl, T. Seeger, A. Leipertz, S. Gonschorek, B. Abröll, M. Käß. 2011. ”Entwicklung eines Echtzeitanalyse-Systems zur Charakterisierung von Brenngasgemischen in Gasturbinenkraftwerken”. Chem. Ing. Tech. 83, pp. 247-253.10.1002/cite.201000095Search in Google Scholar
17. S. Schlüter, F. Krischke, N. Popovska-Leipertz, T. Seeger, G. Breuer, C. Jeleazcov, J. Schüttler and A. Leipertz. 2015. ”Demonstration of a signal enhanced fast Raman sensor for multi species gas analysis at a low pressure range for anesthesia monitoring”. J. Raman Spectrosc. 46, pp. 708-715.10.1002/jrs.4711Search in Google Scholar
18. S. Schlüter, T. Seeger, N. Popovska-Leipertz, A. Leipertz. 2016. ”Atemzyklus genaues Anästhesiegas-Monitoring mit einer laserbasierten Raman-Sonde unter klinischen Bedingungen”. Technisches Messen 83, pp. 289-299.10.1515/teme-2015-0055Search in Google Scholar
19. J. Kiefer, T. Seeger, S. Steuer, S. Schorsch, A. Leipertz. 2008. ”Design and characterization of a spontaneous Raman scattering based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant”. Meas. Sci. Technol. 19, 085408. doi:10.1088/0957-0233/19/8/085408.Search in Google Scholar
20. T. Holderbaum. 1991. ”Die Vorausberechnung von Dampf-Flüssig-Gleichgewichten mit einer Gruppenbeitragszustandsgleichung”. In: Fortschrittsber. VDI Reihe 3, 243, pp.,1–154.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston