Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag March 28, 2020

Investigation of complex permittivity spectra of foundry sands

Untersuchung komplexer Permittivitätsspektren von Gießereisanden
Luca Bifano

Luca Bifano received the M.Sc. degree from the University of Bayreuth, Bayreuth, Germany, in 2018. Since 2018 he is with the Chair of Measurement and Control Systems, University of Bayreuth, Bayreuth, Germany. His current research interests include impedance measurement systems and their applications in field of bulk materials with the focus on foundry industry.

EMAIL logo
, Alice Fischerauer

Dipl.-Ing. (univ.) Alice Fischerauer works since 2004 as a senior research and teaching associate with the Chair of Measurement and Control Systems at the University of Bayreuth. Her main research interests are on impedance spectroscopy and electrical capacitance tomography with focus on modelling and signal processing.

and Gerhard Fischerauer

Gerhard Fischerauer (M’87) received the Dipl.-Ing. and Dr.-Ing. degrees from the Technical University of Munich, Munich, Germany, in 1989 and 1996, respectively. From 1990 to 2001, he was with the Microacoustics Group, Siemens Corporate Technology and Epcos, Munich, and then joined Siemens Matsushita, Munich. Since 2001, he has been the Chair of Measurement and Control Systems, University of Bayreuth, Bayreuth, Germany. His current research interests include metrology in general and sensor systems, microsensors, microwave engineering, and microacoustic device.

From the journal tm - Technisches Messen

Abstract

This paper discusses impedance spectroscopy as a method to characterize different types of quartz sand, chromite sand, and mixtures of sand. Based on two types of measurement cells, the impedance spectra for various dry sands were measured. The spectra differ enough to allow the sands to be distinguished. The results were validated by extracting the relative permittivity from the impedance and comparing it to literature data. After that, the method could be applied with confidence to other material systems. The influence of moisture was investigated with two types of quartz sand, and typical mixtures of form sand, chromite sand, and regenerated (quartz) sand were studied. In each case, the sand composition had a distinct influence on the Nyquist plot of the impedance spectrum. Compared to results from a laboratory foundry system, the new method exhibits a much more systematic dependence on the sand composition. If one succeeds in describing the impedance spectra with an equivalent circuit model parameterized by only a few parameters, these parameters could be used to identify and classify sand mixtures in the field. This would allow one, for example, to implement feedback control strategies in foundry regeneration processes, which would stabilize the processes and improve the quality of the casting products.

Zusammenfassung

In diesem Artikel wird die Impedanzspektroskopie als Methode zur Charakterisierung verschiedener Arten von Quarzsand, Chromitsand und Sandmischungen erörtert. Basierend auf zwei Arten von Messzellen wurden die Impedanzspektren für verschiedene trockene Sande gemessen. Die Spektren sind so unterschiedlich, dass verschiedene Sande erkannt werden. Die Ergebnisse wurden validiert, indem die relative Permittivität aus der Impedanz extrahiert und mit Literaturdaten verglichen wurde. Danach konnte die Methode sicher auf andere Materialsysteme übertragen werden. Der Einfluss von Feuchtigkeit wurde mit zwei Arten von Quarzsand untersucht. Zusätzlich dazu wurden typische Gemische aus Formsand, Chromitsand und regeneriertem (Quarz-)Sand untersucht. In jedem Fall hatte die Sandzusammensetzung einen deutlichen Einfluss auf das Nyquist-Diagramm des Impedanzspektrums. Im Vergleich zu Laborergebnissen einer Gießerei zeigt die neue Methode eine wesentlich systematischere Abhängigkeit von der Sandzusammensetzung. Wenn es gelingt, die Impedanzspektren mit einem mit wenigen Parametern beschreibbaren Ersatzschaltbild nachzubilden, können diese Parameter zur Identifizierung und Klassifizierung von Sandmischungen im Feld verwendet werden. Dies würde es beispielsweise ermöglichen, Rückkopplungsstrategien in Gießereiregenerationsprozessen umzusetzen, die die Prozesse stabilisieren und die Qualität der Gussprodukte verbessern würden.

Award Identifier / Grant number: ZF4152305DB8

Funding statement: This work was supported by the German Federal Ministry for Economic Affairs and Energy, grant number ZF4152305DB8.

About the authors

Luca Bifano

Luca Bifano received the M.Sc. degree from the University of Bayreuth, Bayreuth, Germany, in 2018. Since 2018 he is with the Chair of Measurement and Control Systems, University of Bayreuth, Bayreuth, Germany. His current research interests include impedance measurement systems and their applications in field of bulk materials with the focus on foundry industry.

Alice Fischerauer

Dipl.-Ing. (univ.) Alice Fischerauer works since 2004 as a senior research and teaching associate with the Chair of Measurement and Control Systems at the University of Bayreuth. Her main research interests are on impedance spectroscopy and electrical capacitance tomography with focus on modelling and signal processing.

Gerhard Fischerauer

Gerhard Fischerauer (M’87) received the Dipl.-Ing. and Dr.-Ing. degrees from the Technical University of Munich, Munich, Germany, in 1989 and 1996, respectively. From 1990 to 2001, he was with the Microacoustics Group, Siemens Corporate Technology and Epcos, Munich, and then joined Siemens Matsushita, Munich. Since 2001, he has been the Chair of Measurement and Control Systems, University of Bayreuth, Bayreuth, Germany. His current research interests include metrology in general and sensor systems, microsensors, microwave engineering, and microacoustic device.

References

1. N. N., “Global Material Resources Outlook to 2060—Economic drivers and environmental consequences,” OECD, 2018.Search in Google Scholar

2. J. Götze and M. Göbbels, Einführung in die Angewandte Mineralogie (in German). Berlin: Springer Spektrum, 2017. DOI: 10.1007/978-3-662-50265-5.Search in Google Scholar

3. P. Peduzzi, “Sand, rarer than one thinks,” UN Environment Program Global Environmental Alert Service (GEAS), March 2014.Search in Google Scholar

4. G. Plötner, “Polymerbeton mit Wüstensand” (in German), German patent DE202006012396U1, Jan. 18, 2007.Search in Google Scholar

5. Statistisches Bundesamt, “Gießerei-Industrie in Deutschland” (in German), 2019.Search in Google Scholar

6. Landesanstalt für Umweltschutz Baden-Württemberg (editor), “Untersuchung von Eisen- und NE-Metallgießereien. Branchengutachten“ (in German), Nov. 1996.Search in Google Scholar

7. T. A. Belyaeva et al., “The effect of very low water content on the complex dielectric permittivity of clays, sand-clay and sand rocks,” Meas. Sci. Technol., Vol. 28, 2017. DOI: 10.1088/1361-6501/28/1/014005.Search in Google Scholar

8. H. Kaden, et al., “Low-frequency dielectric properties of three bentonites at different absorbed water states,” J. Colloid Interface Sci., Vol. 411, 2013. DOI: 10.1016/j.jcis.2013.08.025.Search in Google Scholar

9. S. Wang et al., “Experimental study on frequency-dependent properties of soil electrical parameters,” Electr. Pow. Syst. Res., Vol. 139, 2016. DOI: 10.1016/j.epsr.2015.11.018.Search in Google Scholar

10. Q. A. Al Rashid et al., “Experimental-artificial intelligence approach for characterizing electrical resistivity of partially saturated clay liners,” Appl. Clay Sci., Vol. 156, 2018. DOI: 10.1016/j.clay.2018.01.023.Search in Google Scholar

11. H. Gemming, Prozesssicherheit in der Formstoffaufbereitung mit Hilfe der Fuzzy-Logik (in German), Ph.D. dissertation, Freiberg, 2003.Search in Google Scholar

12. J. Winterhalter et al., “Vermeidung von Abfällen durch abfallarme Produktionsverfahren – Gießereialtsand aus Eisen-, Stahl- und Tempergießereien“ (in German). Karlsruhe, Dec. 1992.Search in Google Scholar

13. C. H. Hamann and W. Vielstich, Elektrochemie (in German). Weilheim: Wiley-VCH, 2005.Search in Google Scholar

14. W. Tilich, H. Polzin and M. Franke, Praxishandbuch bentonitgebundener Formstoff (in German). Berlin: Schiele & Schön, 2019.Search in Google Scholar

15. F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy. New York: Springer, 2003.10.1007/978-3-642-56120-7Search in Google Scholar

16. VDG-Merkblatt R93, “Regenerierte Sande als Formgrundstoff-Anforderungen, Beurteilungskriterien“ (in German), Feb. 1992.Search in Google Scholar

17. R. Harrington, Time-Harmonic Electromagnetic Fields. New York: IEEE Press, Wiley-Interscience, 2001.10.1109/9780470546710Search in Google Scholar

18. J. Bartels, P. TenBruggencate, H. Hausen, K. H. Hellwege, K. L. Schäfer, E. Schmidt (eds.), Landolt-Börnstein: Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik, Technik (in German). Vol. 2: Eigenschaften der Materie in ihren Aggregatszuständen. Part 6: K. H. Hellwege, A. M. Hellwege, Elektrische Eigenschaften I. Berlin: Springer, 1959, pp. 449–558.Search in Google Scholar

19. S. Kirkpatrick, “Percolation and Conduction,” Rev. Modern Phys., Vol. 45, No. 4, pp. 574–588, 1973. DOI: 10.1103/RevModPhys.45.574.Search in Google Scholar

20. E. Barsoukov and J. R. Macdonald, Impedance spectroscopy. Hoboken, New Jersey: Wiley-Interscience, 2005.10.1002/0471716243Search in Google Scholar

21. K. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. Alternating current characteristics,” J. Chem. Phys., Vol. 9, No. 4, pp. 341–351, 1941. DOI: 10.1063/1.1750906.Search in Google Scholar

Received: 2019-09-04
Accepted: 2020-01-16
Published Online: 2020-03-28
Published in Print: 2020-05-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.12.2022 from https://www.degruyter.com/document/doi/10.1515/teme-2019-0121/html
Scroll Up Arrow