Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag January 25, 2020

Moderne Methoden der CT-gestützten Strukturanalyse

Modern techniques of CT based structure analysis
Alexander Ulbricht EMAIL logo , Christian Gollwitzer , Andreas Kupsch ORCID logo , Fabien Léonard , Bernd R. Müller ORCID logo , Tyler Oesch ORCID logo , Yener Onel , Tobias Thiede and Uwe Zscherpel
From the journal tm - Technisches Messen

Zusammenfassung

Durch den großflächigen Einsatz der Computertomographie (CT) in unterschiedlichen Industriebereichen steigen auch die Anforderungen an die quantitative Bildanalyse. Subjektive Bildwahrnehmung muss durch objektive Algorithmen ersetzt werden. In diesem Artikel stellt die Bundesanstalt für Materialforschung und -prüfung (BAM), die seit den 1980er Jahren an der Entwicklung der industriellen CT beteiligt ist, anhand ausgewählter Beispiele den aktuellen Stand ihrer Analysemethoden an verschiedenen Anwendungsbeispielen der CT vor.

Abstract

The increasing use of computed tomography (CT) in various industrial sectors requires more sophisticated techniques of quantitative image analysis. Subjective image perception needs to be replaced by objective algorithms. The German Federal Institute for Materials Research and Testing (BAM) has been involved in the development of industrial CT since the 1980s. This paper summarizes the current status of quantitative 3D image analysis techniques based on selected examples.

Literatur

1. DIN EN ISO 15708-1: Zerstörungsfreie Prüfung – Durchstrahlungsverfahren für Computertomographie – Teil 1: Terminologie (ISO 15708-1:2017); Deutsche Fassung EN ISO 15708-1:2019.Search in Google Scholar

2. P. Reimers, “Quality assurance of radioactive waste packages by computerized tomography, Task 3: characterization of radioactive waste forms: A series of final reports (1985-89/ No 37),” in: “Nuclear Science and Technology,” Commission of the European Communities (CEC), vol. 37, 1992.Search in Google Scholar

3. A. Rack et al., “High resolution synchrotron-based radiography and tomography using hard X-rays at the BAMline (BESSY II),” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 586, no. 2, pp. 327–344, 2008.10.1016/j.nima.2007.11.020Search in Google Scholar

4. T. Thiede, T. Mishurova, S. Evsevleev, I. Serrano-Munoz, C. Gollwitzer, and G. Bruno, “3D Shape Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT,” Quantum Beam Sci., vol. 3, no. 3, 2019.10.3390/qubs3010003Search in Google Scholar

5. J. Schindelin, C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, “The ImageJ ecosystem: An open platform for biomedical image analysis,” Molecular Reproduction and Development, vol. 82, no. 7-8, pp. 518–529, 2015.10.1002/mrd.22489Search in Google Scholar

6. T. W. Ridler and S. Calvard, “Picture Thresholding Using an Iterative Selection Method,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 8, no. 8, pp. 630–632, 1978.10.1109/TSMC.1978.4310039Search in Google Scholar

7. B. Münch, P. Gasser, L. Holzer, and R. Flatt, “FIB-Nanotomography of Particulate Systems - Part II: Particle Recognition and Effect of Boundary Truncation,” Journal of the American Ceramic Society, vol. 89, no. 8, pp. 2586–2595, 2006.10.1111/j.1551-2916.2006.01121.xSearch in Google Scholar

8. S. Kitagawa, “Metal-organic frameworks (MOFs),” Chemical Society Reviews, vol. 43, no. 16, pp. 5415–5418, 2014.10.1039/C4CS90059FSearch in Google Scholar

9. S.-N. Zhao, X.-Z. Song, S.-Y. Song, and H.-j. Zhang, “Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors,” (in English), Coordin Chem Rev, vol. 337, pp. 80–96, 2017.10.1016/j.ccr.2017.02.010Search in Google Scholar

10. P. Scholz, A. Ulbricht, Y. Joshi, C. Gollwitzer, and S. Weidner, “Microstructure of Polymer-imprinted Metal-Organic Frameworks determined by Absorption Edge Tomography,” International Journal of Materials Research, 2019 (accepted).10.3139/146.111817Search in Google Scholar

11. H. Thakkar, S. Eastman, Q. Al-Naddaf, A. A. Rownaghi, and F. Rezaei, “3D-Printed Metal-Organic Framework Monoliths for Gas Adsorption Processes,” (in English), Acs Appl Mater Inter, vol. 9, no. 41, pp. 35908–35916, 2017.10.1021/acsami.7b11626Search in Google Scholar

12. W. Thomlinson, H. Elleaume, L. Porra, and P. Suortti, “K-edge subtraction synchrotron X-ray imaging in bio-medical research,” Phys Med, vol. 49, pp. 58–76, 2018.10.1016/j.ejmp.2018.04.389Search in Google Scholar

13. Y. Hayakawa et al., “Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 402, pp. 228–231, 2017.10.1016/j.nimb.2017.03.014Search in Google Scholar

14. K. G. Scheckel, R. Hamon, L. Jassogne, M. Rivers, and E. Lombi, “Synchrotron X-ray absorption-edge computed microtomography imaging of thallium compartmentalization in Iberis intermedia,” (in English), Plant and Soil, vol. 290, no. 1-2, pp. 51–60, 2007.10.1007/s11104-006-9102-7Search in Google Scholar

15. F. Pedregosa, et al., “Scikit-learn: Machine Learning in Python,” (in English), Journal of Machine Learning Research, vol. 12, pp. 2825–2830, Oct 2011.Search in Google Scholar

16. X. E. Gros, Applications of NDT Data Fusion, 1 ed. New York: Springer US, 2001, pp. XIV, 277.10.1007/978-1-4615-1411-4Search in Google Scholar

17. M.-A. Ploix, V. Garnier, D. Breysse, and J. Moysan, “NDE data fusion to improve the evaluation of concrete structures,” NDT & E International, vol. 44, no. 5, pp. 442–448, 2011.10.1016/j.ndteint.2011.04.006Search in Google Scholar

18. C. Soutis, “Carbon fiber reinforced plastics in aircraft construction,” Materials Science and Engineering: A, vol. 412, no. 1, pp. 171–176, 2005.10.1016/j.msea.2005.08.064Search in Google Scholar

19. C. Soutis, “Recent advances in building with composites,” Plastics, Rubber and Composites, vol. 38, no. 9-10, pp. 359–366, 2009.10.1179/146580109X12540995045606Search in Google Scholar

20. C. Soutis and P. T. Curtis, “Prediction of the post-impact compressive strength of cfrp laminated composites,” Composites Science and Technology, vol. 56, no. 6, pp. 677–684, 1996.10.1016/0266-3538(96)00050-4Search in Google Scholar

21. F. Léonard, J. Stein, C. Soutis, and P. J. Withers, “The quantification of impact damage distribution in composite laminates by analysis of X-ray computed tomograms,” Composites Science and Technology, vol. 152, pp. 139–148, 2017.10.1016/j.compscitech.2017.08.034Search in Google Scholar

22. A. Kupsch et al., “Evaluating porosity in cordierite diesel particulate filter materials, part 1 X-ray refraction,” Journal of Ceramic Science and Technology, vol. 4, no. 4, pp. 169–176, 2013.Search in Google Scholar

23. A. Kupsch, B. R. Müller, A. Lange, and G. Bruno, “Microstructure characterization of ceramics via 2D and 3D X-ray refraction techniques,” Journal of the European Ceramic Society, vol. 37, no. 5, pp. 1879–1889, 2017.10.1016/j.jeurceramsoc.2016.12.031Search in Google Scholar

24. K. W. Harbich, M. P. Hentschel, and J. Schors, “X-ray refraction characterization of non-metallic materials,” NDT & E International, vol. 34, no. 4, pp. 297–302, 2001.10.1016/S0963-8695(00)00070-0Search in Google Scholar

25. J. Nellesen et al., “In situ analysis of damage evolution in an Al/Al2O3 MMC under tensile load by synchrotron X-ray refraction imaging,” Journal of Materials Science, vol. 53, no. 8, pp. 6021–6032, 2018.10.1007/s10853-017-1957-xSearch in Google Scholar

26. R. Laquai, B. R. Müller, G. Kasperovich, J. Haubrich, G. Requena, and G. Bruno, “X-ray refraction distinguishes unprocessed powder from empty pores in selective laser melting Ti-6Al-4V,” Materials Research Letters, vol. 6, no. 2, pp. 130–135, 2018.10.1080/21663831.2017.1409288Search in Google Scholar

27. M. Erdmann et al., “Diesel-induced transparency of plastically deformed high-density polyethylene,” Journal of Materials Science, vol. 54, no. 17, pp. 11739–11755, 2019.10.1007/s10853-019-03700-8Search in Google Scholar

28. M. P. Hentschel, R. Hosemann, A. Lange, B. Uther, and R. Brueckner, “X-ray small angle scattering for metal wires, glass fibers and hard elastic polypropylene,” Acta Crystallographica Section A: Foundations of Crystallography, vol. 43, no. 4, pp. 506–513, 1987.10.1107/S0108767387099100Search in Google Scholar

29. S. Evsevleev, B. R. Müller, A. Lange, and A. Kupsch, “Refraction driven X-ray caustics at curved interfaces,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 916, pp. 275–282, 2019.10.1016/j.nima.2018.10.152Search in Google Scholar

30. O. Glatter, Kratky, O., Small angle x-ray scattering. London: Academic Press Inc. Ltd, 1982.Search in Google Scholar

31. D. Chapman et al., “Diffraction enhanced x-ray imaging,” (in English), Physics in Medicine and Biology, vol. 42, no. 11, pp. 2015–2025, 1997.10.1088/0031-9155/42/11/001Search in Google Scholar

32. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Review of Scientific Instruments, vol. 66, no. 12, pp. 5486–5492, 1995.10.1063/1.1146073Search in Google Scholar

33. F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources,” Nature Physics, vol. 2, p. 258, 2006.10.1038/nphys265Search in Google Scholar

34. T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, “Phase-contrast imaging of weakly absorbing materials using hard X-rays,” Nature, vol. 373, p. 595, 1995.10.1038/373595a0Search in Google Scholar

35. B. R. Müller and M. P. Hentschel, “Synchrotron radiation refraction topography for characterization of lightweight materials,” (in English), X-Ray Spectrom, vol. 33, no. 6, pp. 402–406, 2004.10.1002/xrs.736Search in Google Scholar

36. V. C. Li, D. K. Mishra, and H. C. Wu, “Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites,” (in English), Mater Struct, vol. 28, no. 184, pp. 586–595, 1995.10.1007/BF02473191Search in Google Scholar

37. S. J. Barnett, J. F. Lataste, T. Parry, S. G. Millard, and M. N. Soutsos, “Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength,” (in English), Mater Struct, vol. 43, no. 7, pp. 1009–1023, 2010.10.1617/s11527-009-9562-3Search in Google Scholar

38. T. Oesch, “Investigation of Fiber and Cracking Behavior for Conventional and Ultra-High Performance Concretes using X-Ray Computed Tomography,” Doctor of Philosophy, Department of Civil and Environmental Engineering, University of Illinois, Urbana, Illinois, USA, 2015.Search in Google Scholar

39. H. Herrmann, E. Pastorelli, A. Kallonen, and J.-P. Suuronen, “Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC),” Journal of Materials Science, vol. 51, no. 8, pp. 3772–3783, 2016.10.1007/s10853-015-9695-4Search in Google Scholar

40. K. J. Trainor, “3-D Analysis of Energy Dissipation Mechanisms in Steel Fiber Reinforced Reactive Powder Concrete,” Master of Science, Civil and Environmental Engineering, University of Maine, Orono, ME, USA, 2011.Search in Google Scholar

41. M. Krause, J. M. Hausherr, B. Burgeth, C. Herrmann, and W. Krenkel, “Determination of the fibre orientation in composites using the structure tensor and local X-ray transform,” Journal of Materials Science, vol. 45, no. 4, pp. 888–896, 2010.10.1007/s10853-009-4016-4Search in Google Scholar

42. R. Eppenga and D. Frenkel, “Monte-Carlo Study of the Isotropic and Nematic Phases of Infinitely Thin Hard Platelets,” (in English), Molecular Physics, vol. 52, no. 6, pp. 1303–1334, 1984, doi: 10.1080/00268978400101951.10.1080/00268978400101951Search in Google Scholar

43. H. Steuer, “Thermodynamical Properties of a Model Liquid Crystal,” Doctor of Natural Sciences, Mathematik und Naturwissenschaften, Technischen Universität Berlin, Berlin, Germany, 2004.Search in Google Scholar

44. T. Oesch, E. Landis, and D. Kuchma, “A methodology for quantifying the impact of casting procedure on anisotropy in fiber-reinforced concrete using X-ray CT,” (in English), Mater Struct, vol. 51, no. 3, 2018.10.1617/s11527-018-1198-8Search in Google Scholar

45. D. McDuff, C. E. Shuchart, S. Jackson, D. Postl, and J. S. Brown, “Understanding Wormholes in Carbonates: Unprecedented Experimental Scale and 3-D Visualization,” presented at the SPE Annual Technical Conference and Exhibition, Florence, Italy, 2010.10.2118/134379-MSSearch in Google Scholar

46. G. Aidagulov, X. Qiu, D. Brady, M. Abbad, Y. Onel, and U. Ewert, “New Insights Into Carbonate Matrix Stimulation From High-Resolution 3D Images of Wormholes Obtained in Radial Acidizing Experiments,” presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 2018.10.2118/192366-MSSearch in Google Scholar

47. X. Qiu, G. Aidagulov, M. Ghommem, and M. Abbad, “Experimental Investigation of Radial and Linear Acid Injection Into Carbonates for Well Stimulation Operations,” presented at the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, 2018.10.2118/192261-MSSearch in Google Scholar

48. B. Powierza, L. Stelzner, T. Oesch, C. Gollwitzer, F. Weise, and G. Bruno, “Water Migration in One-Side Heated Concrete: 4D In-Situ CT Monitoring of the Moisture-Clog-Effect,” J Nondestruct Eval, vol. 38, no. 1, p. 15, 2018.10.1007/s10921-018-0552-7Search in Google Scholar

49. T. Oesch, F. Weise, D. Meinel, and C. Gollwitzer, “Quantitative In-situ Analysis of Water Transport in Concrete Completed Using X-ray Computed Tomography,” Transport in Porous Media, vol. 127, no. 2, pp. 371–389, 2019.10.1007/s11242-018-1197-9Search in Google Scholar

50. A. Trofimov, T. Mishurova, L. Lanzoni, E. Radi, G. Bruno, and I. Sevostianov, “Microstructural analysis and mechanical properties of concrete reinforced with polymer short fibers,” International Journal of Engineering Science, vol. 133, pp. 210–218, 2018.10.1016/j.ijengsci.2018.09.009Search in Google Scholar

Received: 2019-09-06
Accepted: 2019-12-22
Published Online: 2020-01-25
Published in Print: 2020-02-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.11.2022 from frontend.live.degruyter.dgbricks.com/document/doi/10.1515/teme-2019-0125/html
Scroll Up Arrow