Abstract
A real time executable model developed for dynamic heat analysis of a solar hydrogen reactor is described and characterized. To calculate the local distribution of radiation caused by multiple reflection inside the solar receiver the radiosity method is used. Significant optical characteristics including reflectance, transmittance and absorption are investigated related to the used materials and operating conditions. Furthermore, the influence on the model behavior is presented by variation of optical parameters. Simulation results are presented, which show good agreement with experimental data.
Zusammenfassung
Ein in Echtzeit ausführbares Modell für die dynamische Wärmeanalyse eines solaren Wasserstoffreaktors wird beschrieben und charakterisiert. Zur Berechnung der lokalen Strahlungsverteilung durch Mehrfachreflexion im Reaktor wird die Nettostrahlungsmethode verwendet. In Bezug auf die verwendeten Materialien und Betriebsbedingungen werden signifikante optische Eigenschaften wie Reflexion, Transmission und Absorption untersucht. Das Modellverhalten wird durch die Variation optischer Parameter dargestellt. Abschließend werden Simulationsergebnisse vorgestellt, welche gut mit experimentellen Daten übereinstimmen.
About the authors

Steffen Menz is scientific assistant at the University of Applied Sciences RFH in Cologne. His fields of interests are renewable energies, electrical grids, energy management, modeling and simulation of complex systems and hardware development.

Prof. Jörg Lampe is teaching at the University of Applied Sciences RFH in Cologne in the areas of simulation, mathematics and system theory. His research interests are modeling and simulation of complex dynamic systems with regards to efficiency and energy flow, as well as availability and reliability in failure analysis.

Dr. Uwe Tröltzsch is expert engineer at ITK engineering. He was teaching electrical and electronic engineering at the University of Applied Sciences RFH in Cologne. His fields of interest are modeling and simulation of technical and natural systems. These aspects he applies in the development of embedded systems including electronics and software.

Philipp Weiler has studied Mechanical Engineering at the University of Applied Sciences RFH in Cologne in the bachelor program. He worked as a research assistant in the research project ASTOR before starting his master studies in renewable energy at the Technical University of Cologne. His research interests are the physical simulation of regenerative energy systems with a focus on radiation physics.

Arne Pahl worked until September 2019 at the University of Applied Science RFH in Cologne in the laboratory for electrical energy technology. Since then he has been working at the Institute for Fundamentals of Electrical Engineering at Helmut Schmidt University Hamburg in the research field of Electromagnetic Compatibility.

Thomas Fend is Project Manager in the department of Solar Process Engineering and is involved in the development of thermochemical technologies for hydrogen production, receivers for solar thermal power plants and new methods for CO2 capture.

Since 2010 Prof. Dr.-Ing. Thomas Seeger is full Professor for Engineering Thermodynamics at the Faculty IV (Science and Technology), University of Siegen.
Acknowledgements
This work was supported by the LeitmarktAgentur.NRW within the EFRE-Project ASTOR KHH-1-001D.
References
1. O. Behar, A. Khellaf, K. Mohammedi: A review of studies on central receiver solar thermal power plants, Renewable and Sustainable Energy Reviews, Vol. 23, P. 12–39, 2013.10.1016/j.rser.2013.02.017Search in Google Scholar
2. F. Dähler, M. Wild, R. Schäppi, P. Hauetera, T. Cooper, P. Good, C. Larrea, M. Schmitz, P. Furler, A. Steinfeld: Optical design and experimental characterization of a solar concentrating dish system for fuel production via thermochemical redox cycles, Solar Energy, Vol. 170, P. 568–575, 2018.10.1016/j.solener.2018.05.085Search in Google Scholar
3. M. Lin, S. Haussener: Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods, Energy, Vol. 88, P. 667–679, 2015.10.1016/j.energy.2015.06.006Search in Google Scholar
4. P. Furler, A. Steinfeld: Heat transfer and fluid flow analysis of a 4 kW solar thermochemical reactor for ceria redox cycling, Chemical Engineering Science, Vol. 137, P. 373–383, 2015.10.1016/j.ces.2015.05.056Search in Google Scholar
5. P. Parthasarathy, P. Le Clercq: Heat transfer simulation in a high temperature solar reactor, Energy Procedia, Vol. 69, P. 1810–1818, 2015.10.1016/j.egypro.2015.03.154Search in Google Scholar
6. W. Lipinski, J. H. Davidson, S. Haussener, J. F. Klausner, A. M. Mehdizadeh, J. Petrasch, A. Steinfeld, L. Venstrom: Review of heat transfer research for solar thermochemical applications, Journal of Thermal Science and Engineering Applications, Vol. 5, Issue 2, 021005, 2013. https://doi.org/10.1115/1.4024088.10.1115/1.4024088Search in Google Scholar
7. J. R. Scheffe, A. Steinfeld: Oxygen exchange materials for solar thermochemical splitting of H2O and CO2: a review, Materials Today, Vol. 17, Issue 7, P. 341–348, 2014.10.1016/j.mattod.2014.04.025Search in Google Scholar
8. P. Furler, J. Scheffe, D. Marxer, M. Gorbar, A. Bonk, U. Vogt, A. Steinfeld: Thermochemical CO2 splitting via redox cycling of ceria reticulated foam structures with dual scale porosities, Phys. Chem. Chem. Phys., Vol. 16, P. 10503–10511, 2014.10.1039/C4CP01172DSearch in Google Scholar
9. C. P. Falter, R. Pitz-Paal: A generic solar-thermochemical reactor model with internal heat diffusion for counter-flow solid heat exchange, Solar Energy, Vol. 144, P. 569–679, 2017.10.1016/j.solener.2017.01.063Search in Google Scholar
10. C. Agrafiotis, M. Roeb, C. Sattler: A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermo chemical cycles, Renewable and Sustainable Energy Reviews, Vol. 42, P. 254–285, 2015.10.1016/j.rser.2014.09.039Search in Google Scholar
11. J.-P. Säck, S. Breuer, P. Cotelli, A. Houaijia, M. Lange, M. Wullenkord, C. Spenke, M. Roeb, C. Sattler: High temperature hydrogen production: Design of a 750 KW demonstration plant for a two step thermochemical cycle, Solar Energy, Vol. 135, P. 232–241, 2016.10.1016/j.solener.2016.05.059Search in Google Scholar
12. S. Lorentzou, A. Zygogianni, C. Pagkoura, G. Karagiannakis, A. G. Konstandopoulos et al.: HYDROSOL-PLANT: structured redox reactors for H2 production from solar thermochemical H2O splitting, AIP Conference Proceedings, Vol. 2033, Issue 1, 2018.10.1063/1.5067144Search in Google Scholar
13. M. Moser, M. Pecchi, T. Fend: Techno-economic assessment of solar hydrogen production by means of thermo-chemical cycles, Energies, Vol. 12, Issue 3, 2019.10.3390/en12030352Search in Google Scholar
14. I. Ermanoski, N. Siegel: Annual average efficiency of a solar-thermochemical reactor, Energy Procedia, Vol. 49, P. 1932–1939, 2014.10.1016/j.egypro.2014.03.205Search in Google Scholar
15. A. Houaijia, C. Sattler, M. Roeb, M. Lange, S. Breuer, J.-P. Säck: Analysis and improvement of a high-efficiency solar cavity reactor design for a two-step thermochemical cycle for solar hydrogen production from water, Solar Energy, Vol. 97, P. 26–38, 2013.10.1016/j.solener.2013.07.032Search in Google Scholar
16. S. Suter, A. Steinfeld, S. Haussener: Pore-level engineering of macroporous media for increased performance of solar-driven thermochemical fuel processing, International Journal of Heat and Mass Transfer, Vol. 78, P. 688–698, 2014.10.1016/j.ijheatmasstransfer.2014.07.020Search in Google Scholar
17. M. Roeb, J.-P. Säck, P. Rietbrock, C. Prahl, H. Schreiber, M. Neises, L. de Oliveira et al.: Test operation of a 100 kW pilot plant for solar hydrogen production from water on a solar tower, Solar Energy, Vol. 85, P. 634–644, 2011.10.1016/j.solener.2010.04.014Search in Google Scholar
18. R. J. Panlener, R. N. Blumenthal, J. E. Garnier: A thermodynamic study of nonstoichiometric cerium dioxide, Journal of Physics and Chemistry of Solids, Vol. 36, Issue 11, P. 1213–1222, 1975.10.2172/4603165Search in Google Scholar
19. Mathworks: https://de.mathworks.com/products/simscape.html, [Online], Day of call: 06.12.2013.Search in Google Scholar
20. D. Laaber, H. v. Storch, K. Wieghardt, H. Fock, C. Sattler, R. Pitz-Paal: One year with Synlight – review of operating experience, AIP Conference Proceedings Vol. 2126, 170007, 2019.10.1063/1.5117677Search in Google Scholar
21. Heraeus: http://www.heraeus.com, Manufacturers technical documentation: Quartz Glass for Optics, Optical Properties, [Online], Day of call: 06.12.2019.Search in Google Scholar
22. S. Decker, F. Durst, D. Trimis, S. Nemoda, V. Stamatov, M. Steven, M. Becker, T. Fend, B. Hoffschmidt, O. Reutter: Thermisch beaufschlagte Porenkörper und deren Durchströmungs- und Wärmeübertragungseigenschaften, 2002.Search in Google Scholar
23. B. Bulfin, A. J. Lowe, K. A. Keogh, B. E. Murphy, O. Lübben, S. A. Krasnikov, I. V. Shvets: Analytical model of
24. B. Bulfin, F. Call, M. Lange, O. Lübben, C. Sattler, R. Pitz-Paal, I. V. Shvets: Thermodynamics of CeO2 thermochemical fuel production, Energy & Fuels, Vol. 29, P. 1001–1009, 2015.10.1021/ef5019912Search in Google Scholar
25. R. Palumbo, M. Keunecke, S. Möller, A. Steinfeld: Reflections on the design of solar thermal chemical reactors: thoughts in transformation, Energy, Vol. 29, P. 727–744, 2004.10.1016/S0360-5442(03)00180-4Search in Google Scholar
26. R. Müller, A. Steinfeld: Band-approximated radiative heat transfer analysis of a solar chemical reactor for the thermal dissociation of zinc oxide, Solar Energy, Vol. 81, P. 1285–1294, 2007.10.1016/j.solener.2006.12.006Search in Google Scholar
27. A. Steinfeld: Radiative transfer in a diffusely/specularly reflecting spherical cavity, Wärme- und Stoffübertragung, Vol. 28, P. 65–68, 1993.10.1007/BF01579623Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston