Abstract
The development of innovative measuring technology for process optimization in hot rolling mills becomes more and more relevant because of increasing demands on product quality. Measurement technology for high-resolution non-contact cross-sectional area measurement has shown that the variation in cross-sectional area contains information about the rolling process. This information can be used for the development of new measurement devices and analytical methods for process optimization. The harsh environmental conditions and strict safety regulations result in great effort when implementing a new sensor prototype in hot rolling mills. For this reason, this work presents a mechatronic test stand that can simulate the cross-sectional area variation under laboratory conditions realistically.
Zusammenfassung
Die Entwicklung neuartiger Messtechnik zur Prozessoptimierung im Warmwalzwerk gewinnt mit steigenden Ansprüchen an die Produktqualität immer mehr Relevanz. Durch hochauflösende berührungslose Messtechnik zur Querschnittsflächenmessung wurde klar, dass in der Querschnittsflächenvariation viele Informationen über den Walzprozess enthalten sind und für die Entwicklung von Messtechnik und Auswertemethoden zur Prozessoptimierung genutzt werden können. Die rauen Umgebungsbedingungen und strengen Sicherheitsvorschriften führen dazu, dass der Einbau neuer Sensorprototypen nur mit großem Aufwand umsetzbar ist. Aus diesem Grund wird in dieser Arbeit ein Versuchsmodell vorgestellt, welches die Querschnittsflächenvariation mit einer Rollenkette unter Laborbedingungen realitätsnah nachbilden kann.
Funding source: European Regional Development Fund
Award Identifier / Grant number: EFRE-0800807
Funding statement: The PIREF research project (reference number EFRE-0800807) is funded by the European Regional Development Fund (EFRE) from 2017 to 2020.
About the authors

Mario Radschun is a research assistant at the Institute for Measurement Engineering and Sensor Technology. He is an external doctoral candidate at the Chemnitz University of Technology since 2017 and is working on techniques for non-contacting volume flow and velocity measurement of hot rod and wire. His expertise is in the development of electronic circuits, embedded software and signal processing.

Annette Jobst is a research assistant at the Institute for Measurement Engineering and Sensor Technology. She is an external doctoral candidate at the Chemnitz University of Technology since 2017 and is working on methods for roll gap measurement and forward slip approximation for hot rod and wire. She studied microtechnology and medical engineering at the Westphalian University of Applied Sciences. Afterwards she worked in the development department for steering column modules and gear selector switches with a leading automotive supplier. She is experienced in systems engineering, sensor physics and signal processing.

Jörg Himmel received his Dipl.-Ing. degree in electrical engineering and the Ph.D. degree from the University of Siegen in Germany, in 1983 and 1989, respectively. From 1988 to 2000 he was the managing director of a spin-off company of the University of Siegen and got then appointed professor for Measurement Engineering and Sensor Technology at the Koblenz University of Applied Sciences. Since 2010, he is with the Ruhr West University of Applied Sciences in Mülheim/Ruhr, Germany, where he is the head of the institute for Measurement Engineering and Sensor Technology. His current research interests include industrial measurement, non-destructive testing and electro surgery. Prof. Himmel is a member of the IEEE Instrumentation and Measurement Chapter Board of the Germany section.

Olfa Kanoun is a full professor for measurement and sensor technology at Chemnitz University of Technology, Germany. She studied electrical engineering and information technology at the Technical University in Munich from 1989 to 1996, where she specialized in the field of electronics. Prof. Kanoun was awarded in 2001 by the Commission of Professors in Measurement Technology (AHMTe.V.) in Germany. In 2016 she has been appointed as Distinguished Lecturer of the IEEE Instrumentation and Measurement Society. In her research, she focuses on sensors, measurement systems and measurement methods. She has a deep experience on impedance spectroscopy, energy harvesting and nanocomposite sensors.
References
1. P. J. Mauk, “Die Einflussgrößen des Walzvorganges und ihre Wirkung auf die Toleranzen der Endquerschnitt bei Stabstahl und Walzdraht,” Der Kalibreur, 60, pp. 21–34, 1999.Search in Google Scholar
2. J. Weidenmüller, “Optimization of encircling eddy current sensors for online monitoring of hot rolled round steel bars,” Zugl.: Chemnitz, Techn. Univ., Diss., 2014, Shaker, Aachen, 2014.Search in Google Scholar
3. J. Weidenmüller, C. Sehestedt, O. Kanoun, and J. Himmel, “Rod shape testing by high frequency eddy current -Passive impedance measurement-,” in 6thInternational Multi-Conference on Systems, Signals and Devices, 2009: SSD ‘09; Djerba, Tunisia, 23–26 March 2009; including 4 conferences, 2009, pp. 1–5.Search in Google Scholar
4. J. Weidenmüller, C. Knopf, C. Sehestedt, and J. Himmel, “Rod shape testing by high frequency eddy current; The experimental Setup,” in IEEE Instrumentation and Measurement Technology Conference Proceedings 2008, Fairmont Empress Hotel & Victoria Conference Center, Victoria, British Columbia, Canada, 12–15 May 2008, 2008, pp. 1482–1486.10.1109/IMTC.2008.4547277Search in Google Scholar
5. Jens Weidenmüller, Christoph Knopf, Christian Sehestedt, Joerg Himmel, and Olfa Kanoun, Eds., P1.5 – Cross-Sectional Area Estimation of hot rolled round steel bars using eddy currents. AMA Service GmbH, P.O. Box 2352, 31506 Wunstorf, Germany, 2009.10.5162/sensor09/v2/p1.5Search in Google Scholar
6. J. Himmel, C. Knopf, I. Schmüser, and J. Weidenmüller, “Wirbelstrombasierte Formmessung an metallischen Halbzeugen,” tm – Technisches Messen, vol. 78, no. 1, p. 181, 2011.10.1524/teme.2011.0075Search in Google Scholar
7. M. Radschun, T. Morgenstern, R. Schafer, O. Kanoun, and J. Himmel, “Improved VNA hardware for applications in civil engineering,” in 2017 14thInternational Multi-Conference on Systems, Signals & Devices (SSD), March 28–31, 2017, Marrakech, Morocco, 2017, pp. 719–723.10.1109/SSD.2017.8166937Search in Google Scholar
8. M. Radschun, A. Jobst, O. Kanoun, and J. Himmel, Process Monitoring in Steel-Mills using Impedance Analysis: VNA Improvement for Data Acquisition, 2017.Search in Google Scholar
9. M. Radschun, A. Jobst, O. Kanoun, and J. Himmel, Velocity Measurement in Rolling Mills using Impedance Analysis, 2018.Search in Google Scholar
10. M. Radschun, A. Jobst, O. Kanoun, and J. Himmel, Non-contacting Velocity Measurement of hot Rod and Wire using Eddy-current Sensors, 2019.Search in Google Scholar
11. A. Jobst, M. Radschun, O. Kanoun, and J. Himmel, Velocity Approximation of Hot Steel Rods Using Frequency Spectroscopy of the Cross-Section Area, 2019.Search in Google Scholar
12. “CRC Handbook of Chemistry and Physics,” 88th ed. Editor-in-Chief: David R. Lide (National Institute of Standards and Technology) CRC Press/Taylor & Francis Group: Boca Raton, FL, 2007. 2640 pp. $139.95. ISBN 0-8493-0488-1; J. Am. Chem. Soc., vol. 130, no. 1, p. 382, 2008.10.1021/ja077011dSearch in Google Scholar
13. H. Stöcker, Ed., Taschenbuch der Physik: Formeln, Tabellen, Übersichten, 4th ed. Thun: Deutsch, 2000.Search in Google Scholar
14. H. Brauer and M. Ziolkowski, “Motion-Induced Eddy Current Testing,” in Handbook of Advanced Non-Destructive Evaluation, N. Ida and N. Meyendorf, Eds., Cham: Springer International Publishing; Imprint Springer, 2019, pp. 1–45.10.1007/978-3-319-30050-4_25-2Search in Google Scholar
15. J. Weidenmüller, M. Heidary Dastjerdi, Ch. Knopf, J. Himmel, and O. Kanoun, Eds., A1.2 – Impedance Model of Eccentric Coil-Target Arrangements in Eddy Current Techniques. AMA Service GmbH, P.O. Box 2352, 31506 Wunstorf, Germany, 2011.10.5162/sensor11/a1.2Search in Google Scholar
16. K. Bergmann, Elektrische Messtechnik: Elektrische und elektronische Verfahren, Anlagen und Systeme, 6th ed. Wiesbaden: Vieweg+Teubner, 2008.10.1007/978-3-663-01616-8Search in Google Scholar
17. P. Horowitz and W. Hill, The art of electronics, 11th ed. Cambridge, New York, NY: Cambridge University Press, 2017.Search in Google Scholar
18. S. W. Smith, The scientist and engineer’s guide to digital signal processing, 1st ed. San Diego, Calif.: California, 1997. Technical Publ.Search in Google Scholar
19. L. Bluestein, “A linear filtering approach to the computation of discrete Fourier transform,” IEEE Trans. Audio Electroacoust., vol. 18, no. 4, pp. 451–455, 1970.10.1109/TAU.1970.1162132Search in Google Scholar
20. D. Vyroubal, “Impedance of the eddy-current displacement probe: the transformer model,” IEEE Trans. Instrum. Meas., vol. 53, no. 2, pp. 384–391, 2004.10.1109/TIM.2003.822705Search in Google Scholar
21. R. Unbehauen, Systemtheorie 1: Allgemeine Grundlagen, Signale und lineare Systeme im Zeit- und Frequenzbereich, 8 Aufl. München: Oldenbourg Wissenschaftsverlag, 2009.Search in Google Scholar
22. W. T. Cochran et al., “What is the fast Fourier transform?,” Proc. IEEE, vol. 55, no. 10, pp. 1664–1674, 1967.10.1109/PROC.1967.5957Search in Google Scholar
23. G. D. Martin, “Chirp Z-transform spectral zoom optimization with MATLAB,” 2005.10.2172/1004350Search in Google Scholar
24. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-time signal processing, 2nd ed. Upper Saddler River, NJ, London: Prentice Hall; Prentice-Hall International (UK), 1998.Search in Google Scholar
25. E. Philippow and K. W. Bonfig, Grundlagen der Elektrotechnik, 10th ed. Berlin, NJ: Verlag Technik, 2000.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston