Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag September 25, 2020

Influence of cutting parameters on the formation of white etching layers in BTA deep hole drilling

Einfluss der Zerspanparameter auf die Ausprägung von weißen Randschichten beim BTA Tiefbohren
Simon Strodick ORCID logo, Kai Berteld, Robert Schmidt, Dirk Biermann, Andreas Zabel and Frank Walther ORCID logo
From the journal tm - Technisches Messen

Abstract

In this study, the influence of cutting speed and feed rate on surface integrity in Boring Trepanning Association (BTA) deep hole drilling of AISI 4140+QT is investigated. Microstructure and micro-hardness in the subsurface zones of bores are analyzed, using metallographic and micromagnetic methods. It was found that when using high feed rates and cutting speeds, white etching layers (WEL) form at the surface of the bores. These layers are up to three times harder than the substrate material and have a maximum thickness of approx. tWEL12µm. WEL were usually followed by a transitional layer, so that elevated hardness was observed until a depth of dsurf=35µm below the surface. Magnetic Barkhausen noise (MBN) analysis proved to be applicable for the fast and reliable detection of WEL. The presented results contribute to gaining a deeper understanding of the complex interrelations between the design of the BTA process, the resulting microstructure in the machined component and the properties of the conditioned surface. Based on discovered correlations, a dynamic process control will be developed for BTA deep hole drilling, which will allow reliably tailoring surface integrity of components to specific demands, like an optimized fatigue performance.

Zusammenfassung

Der Einfluss der Schnittgeschwindigkeit und des Vorschubs auf die Oberflächenbeschaffenheit bei der Tiefbohrbearbeitung nach dem Boring and Trepanning Association (BTA) Verfahren von 42CrMo4+QT wurde untersucht. Die Mikrostruktur und Mikrohärte in der Bohrungsrandzone ließen sich mithilfe metallographischer und mikromagnetischer Verfahren analysieren und charakterisieren. Die Ergebnisse wurden in Relation zu den im Prozess auftretenden Kräften gesetzt. Es zeigte sich, dass sich beim Einsatz hoher Vorschübe und Schnittgeschwindigkeiten weiße Randschichten (engl. white etching layer, WEL) in der Bohrungsrandzone bilden. Diese Schichten weisen eine bis zu drei Mal höhere Härte als das Grundgefüge auf und Dicken von bis zu ca. tWEL12µm. Auf die weißen Randschichten folgt eine Übergangszone und erhöhte Härtewerte lassen sich bis zu einer Tiefe von dsurf=35µm feststellen. Die Analyse des magnetischen Barkhausen Rauschens eignet sich zur schnellen und zuverlässigen Detektion und Charakterisierung der Randschichten. Die vorgestellten Ergebnisse fördern ein tiefgehendes Verständnis des Zusammenhangs zwischen der Gestaltung des BTA-Prozesses, der resultierenden Mikrostruktur und den Eigenschaften der konditionierten Oberflächen. Basierend auf den Erkenntnissen ist es geplant, eine Prozessregelung für den BTA-Prozess zu entwickelt, die es ermöglicht, Oberflächen während der Bearbeitung gezielt zu konditionieren, im Hinblick auf die Optimierung der Schwingfestigkeit und Leistungsfähigkeit allgemein.

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 401539425

Funding statement: The authors would like to thank the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) for funding the depicted research “Process-integrated measuring and control system for the determination and reliable generation of functionally relevant properties in surface edge zones during BTA deep hole-drilling/Prozessintegriertes Mess- und Regelungssystem zur Ermittlung und sicheren Generierung von funktionsrelevanten Eigenschaften in Oberflächenrandzonen beim BTA-Tiefbohren” within the priority programme ‘SPP2086’ through project no. 401539425 (BI 498/96-1; WA 1672/45-1; ZA 427/5-1).

References

1. Biermann D., Bleicher F., Heisel U., Klocke F., Möhring C., Shih A.: Deep hole drilling. CIRP Annals 67, 2 (2018) 673–694.10.1016/j.cirp.2018.05.007Search in Google Scholar

2. Neslušan M., Zgútová K., Maňková I., Kejzlar P., Čapek J.: Nondestructive monitoring of rail surface damage via Barkhausen noise technique. Proceedings of the 17th International Conference on New Trends in Fatigue and Fracture (2018) 287–297.10.1007/978-3-319-70365-7_34Search in Google Scholar

3. Holweger, W., Wolf, M., Merk, D., Blass, T., Goss, M., Loos, J., Barteldes, S., Jakovics, A.: White etching crack root cause investigations. Tribology Transactions 58, 1 (2015) 59–69.10.1080/10402004.2014.942938Search in Google Scholar

4. Brown, M., Wright, D., M’Saoubi, R., Mc Gourlay, J., Wallis, E., Mantle, A., Crawforth, P., Ghadbeigi, H.: Destructive and non-destructive testing methods for characterization and detection of machining induced white layer: A review paper. CIRP Journal of Manufacturing Science and Technology 23 (2018) 39–53.10.1016/j.cirpj.2018.10.001Search in Google Scholar

5. Nickel, J., Baak, N., Biermann, D., Walther, F.: Influence of the deep hole drilling process and sulphur content on the fatigue strength of AISI 4140 steel components. Procedia CIRP 71 (2018) 209–214.10.1016/j.procir.2018.05.069Search in Google Scholar

6. Neslušan M., Mičietová A., Hadzima B., Mičieta B., Kejzlar P., Čapek J., Uríček J., Pastorek F.: Barkhausen noise emission in hard-milled surfaces. Materials 12, 660 (2019) 1–17.10.3390/ma12040660Search in Google Scholar

7. Baak, N., Schaldach, F., Nickel, J., Biermann, D., Walther, F.: Barkhausen noise assessment of the surface conditions due to deep hole drilling and their influence on the fatigue behavior of AISI 4140. Metals 8(9), 720 (2018) 1–12.Search in Google Scholar

8. Zhang, H., Shen, X., Bo, A., Li, Y., Zhan, H., Gu, Y.: A multiscale evaluation of the surface integrity in Boring trepanning association deep hole drilling. International Journal of Machine Tools and Manufacture 123 (2017) 48–56.10.1016/j.ijmachtools.2017.07.005Search in Google Scholar

9. Richardson, R., Bhatti, R.: A review of research into the role of guide pads in BTA deep-hole machining. Journal of Materials Processing Technology 110 (2001) 61–69.10.1016/S0924-0136(00)00733-0Search in Google Scholar

10. Abrahams H.: Investigations of guide pad wear and process dynamic in BTA deep hole drilling of austenitic steels (in German). Dissertation, Technische Universität Dortmund (2016).Search in Google Scholar

11. Strodick S., Walther F., Schmidt R., Zabel A., Biermann D.: Analysis of the residual stress state in the surface edge zone of deep drilled AISI 4140 and AISI 304 L (in German). Werkstoffprüfung 2019 – Fortschritte in der Werkstoffprüfung für Forschung und Praxis (2019) 287–292.Search in Google Scholar

12. VDI-Directive 3210, Sheet 1: Deep hole drilling techniques (in German), Beuth-Verlag, Berlin (2006).Search in Google Scholar

13. Schmidt, R., Strodick, S., Walther, F., Biermann, D., Zabel, A.: Influence of the process parameters and forces on the bore sub-surface zone in BTA deep-hole drilling of AISI 4140 and AISI 304 L. Procedia CIRP 87 (2020) 41–46.10.1016/j.procir.2020.02.010Search in Google Scholar

14. Nickel, J., Baak, N., Walther, F., Biermann, D.: Influence of the feed rate in the single-lip deep hole drilling process on the surface integrity of steel components. Advanced Surface Enhancement. INCASE 2019. Lecture Notes in Mechanical Engineering, Singapore (2020) 198–212.10.1007/978-981-15-0054-1_21Search in Google Scholar

Received: 2020-07-17
Accepted: 2020-09-02
Published Online: 2020-09-25
Published in Print: 2020-11-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow