Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag December 1, 2020

Concept for soft sensor structure for turning processes of AISI4140

DFG priority program 2086, project: In-process soft sensor for surface-conditioning during longitudinal turning of AISI4140

Konzeptstruktur eines Softsensors für Drehprozesse von 42CrMo4
David Böttger, Benedict Stampfer, Daniel Gauder, Benjamin Straß, Benjamin Häfner, Gisela Lanza, Volker Schulze and Bernd Wolter
From the journal tm - Technisches Messen

Abstract

During turning of quenched and tempered AISI4140 surface layer states can be generated, which degrade the lifetime of manufactured parts. Such states may be brittle rehardened layers or tensile residual stresses. A soft sensor concept is presented in this work, in order to identify relevant surface modifications during machining. A crucial part of this concept is the measurement of magnetic characteristics by means of the 3MA-testing (Micromagnetic Multiparameter Microstructure and Stress Analysis). Those measurements correlate with the microstructure of the material, only take a few seconds and can be processed on the machine. This enables a continuous workpiece quality control during machining. However specific problems come with the distant measurement of thin surface layers, which are analyzed here. Furthermore the scope of this work is the in-process-measurement of the tool wear, which is an important input parameter of the thermomechanical surface load. The availability of the current tool wear is to be used for the adaption of the process parameters in order to avoid detrimental surface states. This enables new approaches for a workpiece focused process control, which is of high importance considering the goals of Industry 4.0.

Zusammenfassung

Beim Außenlängsdrehen von vergütetem 42CrMo4 können Randschichtzustände entstehen, welche die Lebensdauer von gefertigten Bauteilen beeinträchtigen. Beispiele für solche Zustände sind spröde Neuhärtezonen und Zugeigenspannungen. In dieser Arbeit wird ein Softsensor-Konzept vorgestellt, mit dem relevante Randschichtmodifikationen während der Zerspanung vorhergesagt werden sollen. Ein wesentlicher Teil des Konzepts ist die Messung magnetischer Kenngrößen mit der 3MA-Prüftechnik (Mikromagnetische Multiparametrische Mikrostruktur- und Spannungs-Analyse). Diese Messungen korrelieren mit der materiellen Mikrostruktur, nehmen nur wenige Sekunden in Anspruch und können im Bearbeitungsraum der Maschine erfolgen. Dies eröffnet die Möglichkeit einer 100-prozentigen Prüfung des Werkstücks bei der Zerspanung. Jedoch gibt es spezifische Probleme bei der berührungsfreien Messung dünner Randschichten, die hier analysiert werden. Darüber hinaus liegt der Fokus dieser Arbeit auf der prozessparallelen Ermittlung des Werkzeugverschleißes, der eine wichtige Einflussgröße für die thermomechanische Randschichtlast ist. Die Kenntnis des Verschleißes soll genutzt werden, um die Stellgrößen des Zerspanungsprozesses anzupassen und so schädliche Randschichtzustände zu vermeiden. Damit ergeben sich neue Ansätze für eine werkstückorientierte Prozessregelung, die im Zeitalter von Industrie 4.0 eine immer größere Bedeutung erlangen.

Funding statement: The scientific work has been supported by the DFG within the research priority program SPP 2086 (SCHU 1010/65-1, LA 2351/46-1, WO 903/4-1). The authors thank the DFG for this funding and intensive technical support.

Acknowledgment

Special thanks for the inspiring collaboration of the department Production-Integrated NDT of Fraunhofer IZFP and the involved research assistants of wbk Institute of Production Science at Karlsruhe Institute of Technology KIT.

References

1. DIN 8589-0:2003-09: Manufacturing processes chip removal – Part 0: General – Classification, subdivision, terms and definitions.Search in Google Scholar

2. Y. K. Chou and C. J. Evans, “White layers and thermal modeling of hard turned surfaces,” International Journal of Machine Tools and Manufacture, vol. 39, no. 12, pp. 1863–1881, 1999.10.1016/S0890-6955(99)00036-XSearch in Google Scholar

3. S. Buchkremer, F. Klocke, and B. Döbbeler, 2016. “Impact of the Heat Treatment Condition of Steel AISI 4140 on Its Frictional Contact Behavior in Dry Metal Cutting,” Journal of Manufacturing Science and Engineering, vol. 138, no. 12, p. 121006.10.1115/1.4033447Search in Google Scholar

4. J. Rech and A. Moisan, “Surface integrity in finish hard turning of case-hardened steels,” International Journal of Machine Tools and Manufacture, vol. 43, no. 5, pp. 543–550, 2003.10.1016/S0890-6955(02)00141-4Search in Google Scholar

5. J. Kundrak, A. G. Mamalis, K. Gyani, and V. Bana, “Surface layer microhardness changes with high-speed turning of hardened steels,” The International Journal of Advanced Manufacturing Technology, vol. 53, no. 1-4, pp. 105–112, 2011.10.1007/s00170-010-2840-ySearch in Google Scholar

6. V. Schulze et al., “Influence of cutting parameters, tool coatings and friction on the process heat in cutting processes and phase transformations in workpiece surface layers*,” HTM Journal of Heat Treatment and Materials, vol. 68, no. 1, pp. 22–31, 2013.10.3139/105.110177Search in Google Scholar

7. H. K. Tönshoff, C. Arendt, and R. B. Amor, “Cutting of Hardened Steel,” CIRP Annals, vol. 49, no. 2, pp. 547–566, 2000.10.1016/S0007-8506(07)63455-6Search in Google Scholar

8. S. Saini, I. S. Ahuja, and V. S. Sharma, “Residual stresses, surface roughness, and tool wear in hard turning: a comprehensive review,” Materials and Manufacturing Processes, vol. 27, no. 6, pp. 583–598, 2012.10.1080/10426914.2011.585505Search in Google Scholar

9. B. Stampfer, D. Böttger, D. Gauder, F. Zanger, B. Häfner, B. Straß, B. Wolter, G. Lanza and V. Schulze, 2020. Experimental identification of a surface integrity model for turning of AISI4140. Procedia CIRP, 87, pp.83–88.10.1016/j.procir.2020.02.067Search in Google Scholar

10. Wolter B, Gabi Y, Conrad C. Nondestructive Testing with 3MA—An Overview of Principles and Applications. Applied Sciences 9 (6), 2019.10.3390/app9061068Search in Google Scholar

11. Wolter B., Theiner, W.A., Kern, R., Becker, R., Rodner, C., Kreier, P., Ackeret, P. Detection and Quantification of Grinding Damage by Using EC and 3MA Techniques, Proc. International Conference on Barkhausen Noise and Micromagnetic Testing, 4.; 03.–04.07.2003, Brescia, Italy, pp. 159–170.Search in Google Scholar

12. G. Dobmann, “NDT for Stress Measurements in Components,” In: Encyclopedia of materials, Amsterdam [u.a.]: Elsevier, 2001, pp. 5967–5971.10.1016/B0-08-043152-6/01041-XSearch in Google Scholar

13. Schwienbacher S., Wolter B.: Ermittlung und Charakterisierung von Randzonenkennwerten und – Eigenschaften und deren Einfluss auf die Flankentragfähigkeit einsatzgehärteter, geschliffener Zahnräder, Abschlussbericht FVA-Forschungsvorhaben Nr. 453I, FVA-Heft 830, Forschungsvereinigung Antriebstechnik eV, Frankfurt am Main, 2007.Search in Google Scholar

14. Gabi Y., Martins, O., Wolter, B., Conrad C., Straß B. 3MA Non-destructive analysis on hardened material by finite element simulation and experiment, 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), Algiers, 2018, pp. 1–4, doi: 10.1109/CISTEM.2018.8613406.Search in Google Scholar

15. Scholtes B, Macherauch E., Auswirkungen mechanischer Randschicht-verformungen auf das Festigkeitsverhalten metallischer Werkstoffe. Zeitschrift für Metallkunde, vol. 77, no. 5, pp. 322–337, 1986.Search in Google Scholar

16. Dirk Bähre, Proessbegleitende Zerspanbarkeitsanalyse beim Drehen von Stahl, Produktionstechnische Berichte, Band 14, Lehrstuhl für Fertigungstechnik und Betriebsorganisation Universität Kaiserslautern, 1994.Search in Google Scholar

17. H. Tönshoff, M. Jung, S. Männel, and W. Rietz, “Using acoustic emission signals for monitoring of production processes,” Ultrasonics, vol. 37, no. 10, pp. 681–686, 2000.10.1016/S0041-624X(00)00026-3Search in Google Scholar

18. T. Waschkies, R. Licht, and B. Valeske, “Luftultraschallprüfung – berührungslose kontaminationsfreie Werk-stoffcharakterisierung,” (Deutsch), Stahl und Eisen: Zeitschrift für die Herstellung und Verbreitung von Eisen und Stahl, pp. 249–252, 2015.Search in Google Scholar

19. E. Waschkies, C. Sklarczyk, and K. Hepp, “Tool Wear Monitoring at Turning,” (Englisch), Journal of Engineering for Industry – New York: American Society of Mechanical Engineers (1994), p. 521, 1994.Search in Google Scholar

20. Q. Liu, X. Chen, and N. Gindy, “Fuzzy pattern recognition of AE signals for grinding burn,” International Journal of Machine Tools and Manufacture, vol. 45, no. 7-8, pp. 811–818, 2005.10.1016/j.ijmachtools.2004.11.002Search in Google Scholar

21. Y. B. Guo and S. C. Ammula, “Real-time acoustic emission monitoring for surface damage in hard machining,” International Journal of Machine Tools and Manufacture, vol. 45, no. 14, pp. 1622–1627, 2005.10.1016/j.ijmachtools.2005.02.007Search in Google Scholar

22. B. Lin, B. Recke, J. K. Knudsen, and S. B. Jørgensen, “A systematic approach for soft sensor development,” Computers & Chemical Engineering, vol. 31, no. 5-6, pp. 419–425, 2007.10.1016/S1570-7946(05)80033-1Search in Google Scholar

23. H. Ruser and F. Puente León, 2007. “Informationsfusion – Eine Übersicht (Information Fusion – An Overview),” tm – Technisches Messen, vol. 74, no. 3, p. 74.10.1524/teme.2007.74.3.93Search in Google Scholar

24. M. Haberjahn, “Multilevel Datenfusion konkurrierender Sensoren in der Fahrzeugumfelderfassung (Dissertation),” Humboldt-Universität zu Berlin, 2013.Search in Google Scholar

25. JCGM, 1. (2008). Guide to the expression of uncerainty in measurement. Evaluation of measurement.Search in Google Scholar

26. Metrology, J. C. (2000). An introduction to the GUM and related documents.Search in Google Scholar

27. VDA. (2011). Prüfprozesseignung, Eignung von Messsystemen, Mess- und Prüfprozessen, Erweiterte Messunsicherheit, Konformitätsbewertung. VDA 5.Search in Google Scholar

28. MSA. (2010). Measurement Systems Analysis, Reference Manual.Search in Google Scholar

29. Weckenmann, A. e. (2009). Mutlisensor data fusion in dimensional metrology. CIRP Annals – Manufacturing Technology.10.1016/j.cirp.2009.09.008Search in Google Scholar

30. Sommer, K.-D. (2006). A Bayesian Approach to Information Fusion for Evaluating the Measurement Uncertainty. Proceedings of the International conference on Multisensor Fusion and Integration for Intelligent Systems, Heidelberg.10.1109/MFI.2006.265657Search in Google Scholar

31. R. Coral, C. A. Flesch, C. A. Penz, M. Roisenberg, and A. L. S. Pacheco, “A Monte Carlo-Based Method for Assessing the Measurement Uncertainty in the Training and Use of Artificial Neural Networks,” Metrology and Measurement Systems, vol. 23. no. 2, p. 2806, 2016.10.1515/mms-2016-0015Search in Google Scholar

32. Bayrak, M., Ozturk, F., Demirezen, M. and Evis, Z., Analysis of tempering treatment on material properties of DIN 41Cr4 and DIN 42CrMo4 steels. Journal of Materials Engineering and Performance, 16(5), pp. 597–600, 2007.10.1007/s11665-007-9043-1Search in Google Scholar

33. DIN ISO 513:2012: Classification and application of hard cutting materials for metal removal with defined cutting edges – Designation of the main groups and groups of application.Search in Google Scholar

34. ISO 3685:1993-11: Tool-life testing with single-point turning tools.Search in Google Scholar

Received: 2020-07-20
Accepted: 2020-09-20
Published Online: 2020-12-01
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston