Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag January 22, 2021

Investigating peculiarities of piezoelectric detection methods for acoustic plate waves in material characterisation applications

Untersuchung von Eigenheiten piezoelektrischer Detektionsmethoden für akustische Plattenwellen zur Materialcharakterisierung
Leander Claes, Hanna Schmiegel, Clemens Grünsteidl, Sarah Johannesmann, Manuel Webersen and Bernd Henning
From the journal tm - Technisches Messen

Abstract

Acoustic waves in plates have proven a viable tool for testing and material characterisation purposes. There are a multitude of options for excitation and detection of theses waves, such as optical and piezoelectric systems. While optical systems, with thermoelastic excitation and interferometric detection, have the benefit of being contactless, they usually require rather complex and expensive experimental setups. Piezoelectric systems are more easily realised but require direct contact with the specimen and usually have a limited bandwidth, especially in case of piezoelectric excitation. In this work, the authors compare the properties of piezoelectric and optical detection methods for broad-band acoustic signals. The shape (e. g. the displacement) of a propagating plate wave is given by its frequency and wave number, allowing to investigate correlations between mode shapes and received signal strengths. This is aided by evaluations in normalised frequency and wavenumber space, facilitating comparisons of different specimens. Further, the authors explore possibilities to utilise the specific properties of the detection methods to determine acoustic material parameters.

Zusammenfassung

Akustische Plattenwellen haben sich als vielseitiges Werkzeug zur Materialprüfung und -charakterisierung erwiesen. Es gibt eine Vielzahl von Möglichkeiten zur Anregung und Detektion dieser Wellen, wie zum Beispiel optische und piezoelektrische Systeme. Optische Systeme mit thermoelastischer Anregung und interferometrischer Auswertung haben zwar den Vorteil, dass sie berührungslos sind, erfordern jedoch meist recht komplexe Versuchsanordnungen. Piezoelektrische Systeme sind leichter zu realisieren, bedingen allerdings einen direkten Kontakt mit der Probe und weisen in der Regel, insbesondere im Fall einer piezoelektrischen Anregung, eine begrenzte Bandbreite auf. In diesem Beitrag vergleichen die Autoren piezoelektrische und optische Auswertungsmethoden für breitbandige akustische Plattenwellen. Die Form (zum Beispiel der Auslenkung) einer sich ausbreitenden Plattenwelle wird durch die Frequenz und die Wellenzahl vorgegeben, wodurch Korrelationen zwischen Modenformen und empfangener Signalstärke untersucht werden können. Dies wird weiter durch Auswertungen im normierten Frequenz- und Wellenzahlraum unterstützt, was den Vergleich verschiedener Proben erleichtert. Darüber hinaus untersuchen die Autoren Möglichkeiten, die spezifischen Eigenschaften der Detektionsmethoden bei der Bestimmung von akustischen Materialparametern auszunutzen.

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 449607253

Funding statement: The authors would like to thank the German Research Foundation (DFG, 10.13039/501100001659) for financial support of the research project 449607253.

References

1. J. D. Achenbach. Wave propagation in elastic solids. North-Holland series in applied mathematics and mechanics. North-Holland Publishing Company, 1975. ISBN 0-7204-2367-8.Search in Google Scholar

2. D. Alleyne and P. Cawley. A 2-dimensional Fourier transform method for the quantitative measurement of lamb modes. In IEEE Symposium on Ultrasonics. IEEE, 1990. 10.1109/ultsym.1990.171541.Search in Google Scholar

3. B. A. Auld. Acoustic fields and waves in solids, volume 1. Krieger Publishing Company, 2 edition, 1990. ISBN 0-89874-782-1.Search in Google Scholar

4. F. Bause, J. Rautenberg, and B. Henning. Design, modeling and identification of an ultrasonic composite transducer for target impedance independent short pulse generation. In Proceedings SENSOR 2013, 2013. 10.5162/sensor2013/A3.2.Search in Google Scholar

5. N. Bochud, J. Laurent, F. Bruno, D. Royer, and C. Prada. Towards real-time assessment of anisotropic plate properties using elastic guided waves. The Journal of the Acoustical Society of America, 143 (2), 2018. 10.1121/1.5024353.Search in Google Scholar

6. L. Claes, T. Meyer, F. Bause, J. Rautenberg, and B. Henning. Determination of the material properties of polymers using laser-generated broadband ultrasound. Journal of Sensors and Sensor Systems, 5 (1), 2016. 10.5194/jsss-5-187-2016.Search in Google Scholar

7. H. Coufal, R. Grygier, P. Hess, and A. Neubrand. Broadband detection of laser-excited surface acoustic waves by a novel transducer employing ferroelectric polymers. The Journal of the Acoustical Society of America, 92 (5), 1992. 10.1121/1.404363.Search in Google Scholar

8. W. Gao, C. Glorieux, and J. Thoen. Laser ultrasonic study of lamb waves: determination of the thickness and velocities of a thin plate. International Journal of Engineering Science, 41 (2), 2003. 10.1016/s0020-7225(02)00150-7.Search in Google Scholar

9. K. F. Graff. Wave motion in elastic solids. Oxford engineering science series. Oxford: Clarendon Press, 1975. ISBN 0-19-856118-0.Search in Google Scholar

10. C. Grünsteidl, T. Berer, M. Hettich, and I. Veres. Determination of thickness and bulk sound velocities of isotropic plates using zero-group-velocity lamb waves. Applied Physics Letters, 112, 2018. 10.1063/1.5034313.Search in Google Scholar

11. S. Johannesmann, J. Düchting, M. Webersen, L. Claes, and B. Henning. An acoustic waveguide-based approach to the complete characterisation of linear elastic, orthotropic material behaviour. tm - Technisches Messen, 85 (7–8), 2018. 10.1515/teme-2017-0132.Search in Google Scholar

12. R. Lerch, G. Sessler, and D. Wolf. Technische Akustik: Grundlagen und Anwendungen. Springer, 2009. ISBN 978-3-540-23430-2. 10.1007/978-3-540-49833-9.Search in Google Scholar

13. Y. Lugovtsova, S. Johannesmann, B. Henning, and J. Prager. Analysis of lamb wave mode repulsion and its implications to the characterisation of adhesive bonding strength. In 2019 International Congress on Ultrasonics. ASA, 2019. 10.1121/2.0001074.Search in Google Scholar

14. B. Pavlakovic, M. Lowe, D. Alleyne, and P. Cawley. Disperse: A general purpose program for creating dispersion curves. In D. O. Thompson and D. E. Chimenti, editors, Review of Progress in Quantitative Nondestructive Evaluation, Volume 16A. Springer US, 1997. 10.1007/978-1-4615-5947-4_24.Search in Google Scholar

15. M. Ponschab, D. A. Kiefer, and S. J. Rupitsch. Towards an inverse characterization of third order elastic constants using guided waves. In 2019 IEEE International Ultrasonics Symposium. IEEE, 2019. 10.1109/ultsym.2019.8926294.Search in Google Scholar

16. C. B. Scruby and L. E. Drain. Laser ultrasonics techniques and applications. CRC Press, 1990. ISBN 1-351-43558-2.Search in Google Scholar

17. F. Singer. Mess- und Analysemethoden in der Laserakustik bei breitbandiger Laseranregung. tm - Technisches Messen, 82 (1), 2015. 10.1515/teme-2014-0030.Search in Google Scholar

18. M. Thelen, N. Bochud, M. Brinker, C. Prada, and P. Huber. Laser-excited elastic guided waves reveal the complex mechanics of nanoporous silicon. arXiv:2010.14947, 2020.Search in Google Scholar

19. I. A. Veres, T. Berer, C. Grünsteidl, and P. Burgholzer. On the crossing points of the lamb modes and the maxima and minima of displacements observed at the surface. Ultrasonics, 54 (3), 2014. 10.1016/j.ultras.2013.10.018.Search in Google Scholar

20. M. Webersen, S. Johannesmann, J. Düchting, L. Claes, and B. Henning. Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates. Ultrasonics, 84, 2018. 10.1016/j.ultras.2017.10.005.Search in Google Scholar

Received: 2020-12-17
Accepted: 2021-01-13
Published Online: 2021-01-22
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston