Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag March 25, 2021

Monte Carlo method for the reduction of measurement errors in the material parameter estimation with cavities

Monte-Carlo-Methode zur Verringerung von Messfehlern bei der Materialparameterbestimmung mit Hohlraumresonatoren
Ronny Peter ORCID logo, Luca Bifano and Gerhard Fischerauer
From the journal tm - Technisches Messen

Abstract

The quantitative determination of material parameter distributions in resonant cavities is a relatively new method for the real-time monitoring of chemical processes. For this purpose, electromagnetic resonances of the cavity resonator are used as input data for the reverse calculation (inversion). However, the reverse calculation algorithm is sensitive to disturbances of the input data, which produces measurement errors and tends to diverge, which leads to no measurement result at all. In this work a correction algorithm based on the Monte Carlo method is presented which ensures a convergent behavior of the reverse calculation algorithm.

Zusammenfassung

Die quantitative Bestimmung von Materialparameterverläufen in Hohlraumresonatoren ist eine relativ neue Methode zur echtzeitfähigen Überwachung verfahrenstechnischer Prozesse. Dazu werden elektromagnetische Resonanzen des Hohlraumresonators als Eingangsdaten für die Rückrechnung (Inversion) verwendet. Der Rückrechenalgorithmus ist allerdings empfindlich auf Störungen der Eingangsdaten, die zu Messabweichungen führen und neigt zum Divergieren, was zu gar keinem Messergebnis führt. In dieser Arbeit wird ein auf der Monte-Carlo-Methode beruhender Korrekturalgorithmus präsentiert, der für ein konvergentes Verhalten des Rückrechenalgorithmus sorgt.

Funding source: Deutsche Forschungsgemeinschaft

Award Identifier / Grant number: 389867475

Funding source: Bundesministerium für Wirtschaft und Energie

Award Identifier / Grant number: ZF4152305DB8

Funding statement: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant 389867475 and by the German Federal Ministry for Economic Affairs and Energy under grant ZF4152305DB8.

References

1. R. Peter and G. Fischerauer, “In-situ measurement of permittivity distributions in reactors by cavity perturbation,” Meas. Sci. Techn., vol. 31, no. 9, Jun 2020. DOI: 10.1088/1361-6501/ab6add.Search in Google Scholar

2. L. F. Chen, Microwave Electronics: Measurement and Materials Characterization. Chichester, Hoboken, NJ: Wiley, 2004.10.1002/0470020466Search in Google Scholar

3. R. Peter and G. Fischerauer, “De-embedding method for strongly coupled cavities,” IEEE Trans. Microwave Theory Techn., vol. 66, no. 4, pp. 2025–2033, Apr 2018. DOI: 10.1109/TMTT.2018.2791934.Search in Google Scholar

4. R. Peter and G. Fischerauer, “Measurement of axially inhomogeneous permittivity distributions in resonant microwave cavities,” IEEE Trans. Microw. Theory Tech., vol. 67, no. 6, pp. 2433–2442, Jun 2019. DOI: 10.1109/TMTT.2019.2910177.Search in Google Scholar

5. F. Sbrazzi, P. Faraldi, and A. Soldati, “Appraisal of three-dimensional numerical simulation for sub-micron, particle deposition in a microporous ceramic filter”, Chem. Eng. Sci., vol. 60, no. 23, pp. 6551–6563, Dec 2005.10.1016/j.ces.2005.05.038Search in Google Scholar

6. G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications. New York: Springer, 1995.Search in Google Scholar

7. S. A. Dyer (Ed.), Survey of Instrumentation and Measurement. New York: John Wiley & Sons, 2001.Search in Google Scholar

8. R. Peter and G. Fischerauer, “Homodyne vector network analysis as a tool for the real-time measurement of electrical material parameter distributions in the field,” TM. Tech. Mess., vol. 87, no. 3, Mar 2020. DOI: 10.1515/teme-2019-0139.Search in Google Scholar

Received: 2021-01-08
Accepted: 2021-03-01
Published Online: 2021-03-25
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow