Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag December 16, 2021

Tunable nanopillar array on a quartz-fiber tip for surface enhanced Raman scattering (SERS) detection

Einstellbare Nanosäulenanordnung auf der Spitze einer Quarzglasfaser für oberflächenverstärkte Raman-Spektroskopie (SERS)
Evgeny Melekhov

I received my Bachelor in Microsystems in 2014 and master’s degree in Electrical and Microsystems Engineering in 2017 at the Technical University of Applied Siences Regensburg. I am currently a Ph. D. student under the supervision of Prof. Dr. Alfred Lechner at the Center of Excellence NanoChem.

EMAIL logo
, Tatjana Penn , Tobias Weidauer , Valerius Abb , Martin Kammler and Alfred Lechner
From the journal tm - Technisches Messen

Abstract

In this work, a simple two-step method to create tunable self-assembled three-dimensional nanostructure array-like nanoantennas directly on the tip of an optical quartz glass fiber is described. The structures are prepared by using dry etching of the fiber tip. For the etching process, gold nanoparticles fabricated by thermal dewetting technique were used as template. The structures are applied as sensors for label-free analysis of organic substances in ppb range, such as drug residues in liquid solutions. The measurements are carried out by a portable Raman device with an exchangeable sensor head utilizing the SERS-effect. This method allows in situ applications. In order to characterize the SERS cells, para-thiocresol and diclofenac sodium are used as model substances. For optimization of the substrate performance, different thicknesses of the dewetting-layer (6, 9, 12 nm), different etching times for formation of the pillars (6, 8, 10 and 12 min), and different thicknesses of SERS-metallization (25, 50, 75 nm) of gold and silver are compared. In order to show the applicability of the structure on the tip of a fiber, measurements from the upper side and from the underside of the substrate on quartz plates are compared. Reproducible SERS enhancement factors up to 10 7 were achieved.

Zusammenfassung

In dieser Arbeit wird eine zweistufige Methode beschrieben, um einstellbare selbstorganisierte dreidimensionale SERS-aktive Nanostrukturen in Form von Nanosäulen auf der Spitze einer optischen Quarzglasfaser herzustellen. Die Strukturen werden durch trockenchemisches Ätzen der Faserspitze erzeugt. Für den Ätzprozess werden als Maske Goldnanopartikel verwendet, die mittels Thermal Dewetting hergestellt werden. Der Sensor wird für eine markierungsfreie Analyse von organischen Substanzen, wie bspw. Medikamentenrückstände in wässrigen Lösungen, im ppb-Bereich eingesetzt. Die Messungen werden mit einem tragbaren Raman-Gerät mit einem austauschbaren Sensorkopf durchgeführt. Um die SERS-Zellen zu charakterisieren, werden para-Thiocresol und Diclofenac-Natrium als Modellsubstanzen verwendet. Zur Optimierung der Substratleistung werden unterschiedliche Dicken der Dewettinglayer (6, 9, 12 nm), unterschiedliche Ätzzeiten der Nanosäulen (6, 8, 10 und 12 min) und unterschiedliche Schichtdicken der SERS-Metallisierung (25, 50, 75 nm) von Gold und Silber verglichen. Um die Anwendbarkeit der Struktur an der Spitze einer Faser zu zeigen, werden Messungen von der Oberseite und von der Rückseite des Substrats in Form eines Quarzglasplatten verglichen. Diese Struktur liefert einen reproduzierbaren Verstärkungsfaktor von bis zu 10 7 .

Funding statement: This project was supported by the elsys Bayern FuE-Programm “Elektronische Systeme” des Bayerischen Staatsministeriums für Wirtschaft, Landesentwicklung und Energie (StMWi).

About the author

Evgeny Melekhov

I received my Bachelor in Microsystems in 2014 and master’s degree in Electrical and Microsystems Engineering in 2017 at the Technical University of Applied Siences Regensburg. I am currently a Ph. D. student under the supervision of Prof. Dr. Alfred Lechner at the Center of Excellence NanoChem.

References

1. Antohe, I., Spasic, D., Delport, F., Li, J., & Lammertyn, J. (2017). Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing. Nanotechnology.10.1088/1361-6528/aa6b53Search in Google Scholar

2. Barhoumi, A., Zhang, D., Tam, F., & Halas, N. J. (2008). Surface-enhanced Ramanspectroscopy of DNA. Journal of the American Chemical Society, 5523–5529.10.1021/ja800023jSearch in Google Scholar

3. Bischof, J., Scherer, D., Herminghaus, S., & Leiderer, P. (1996). Dewetting Modes of Thin Metallic Films: Nucleation of Holes and Spinodal Dewetting. Physical Review Letters, 1536–1539.10.1103/PhysRevLett.77.1536Search in Google Scholar

4. Cao, Y. C., Jin, R., & Mirkin, C. A. (2002). Nanoparticles with Raman spectroscopicfingerprints for DNA and RNA detection. Science, 1536–1540.10.1126/science.297.5586.1536Search in Google Scholar

5. Cardinal, M. F., Ende, E. V., Hackler, R. A., McAnally, M. O., Stair, P. C., Schatz, G. C., & Van Duyne, R. P. (2017). Expanding applications of SERS through versatile nanomaterials engineering. The Royal Society of Chemistry, 3886–3903.10.1039/C7CS00207FSearch in Google Scholar

6. Chang, S.-H., Nyagilo, J., Wu, J., Hao, Y., & Davé, D. P. (2013). Optical Fiber-Based Surface-Enhanced Raman Scattering Sensor Using Au Nanovoid Arrays. Plasmonics, 501–508.10.1007/s11468-012-9335-7Search in Google Scholar

7. Chang, T.-W., Gartia, M. R., Seo, S., Hsiao, A., & Liu, G. L. (2014). A wafer-scale backplane-assisted resonating nanoantenna array SERS device created by tunable thermal dewetting nanofabrication. Nanotechnology, 25(14).10.1088/0957-4484/25/14/145304Search in Google Scholar

8. Chen, C. K., Heinz, T. F., Ricard, D., & Shena, Y. R. (1981). Equilibrium and transient study of adsorption of pyridine on silver in an electrolytic solution. Chemical Physics Letters, 455–458.10.1016/0009-2614(81)85500-5Search in Google Scholar

9. Chung, C., & Lee, M.-H. (2004). Self-Assembled Monolayers of Mercaptoacetic Acid on Ag Powder: Characterization by FT-IR Diffuse Reflection Spectroscopy. Bulletin- Korean Chemical Society, 25(10), 1461–1462.10.5012/bkcs.2004.25.10.1461Search in Google Scholar

10. Danielson, D. T., Sparacin, D. K., Michel, J., & Kimerling, L. C. (2006). Surface-energy-driven dewetting theory of silicon-on-insulator agglomeration. Journal of Applied Physics.10.1063/1.2357345Search in Google Scholar

11. Duyne, R. P., Hulteen, J. C., & Treichelb, D. A. (1993). Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfacessupported on glass. The Journal of Chemical Physics, 2101–2115.10.1063/1.465276Search in Google Scholar

12. Etchegoin, P. G., & Le Ru, E. C. (2008). A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics, 6079–6089.10.1039/b809196jSearch in Google Scholar

13. Fleischmann, M., Hendra, P. J., & McQuillan, A. J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 26(2), 163–166.10.1016/0009-2614(74)85388-1Search in Google Scholar

14. Haehner, G., Woell, C., Buck, M., & Grunze, M. (1993). Investigation of intermediate steps in the self-assembly of n-alkanethiols on gold surfaces by soft x-ray spectroscopy. Langmuir, 1955–1958.10.1021/la00032a005Search in Google Scholar

15. Iliescu, T., M.Baia, & Kiefer, W. (2004). FT-Raman, surface-enhanced Raman spectroscopy and theoretica investigation of diclofenac sodium. Chemical Physics, 298, 167–174.10.1016/j.chemphys.2003.11.018Search in Google Scholar

16. Kwak, J., Lee, W., Kim, J.-B., Bae, S.-I., & Jeong, K.-H. (2019). Fiber-optic plasmonic probe with nanogap-rich Au nanoislands for on-site surface-enhanced Raman spectroscopy using repeated solid-state dewetting. Journal of Biomedical Optics.10.1117/1.JBO.24.3.037001Search in Google Scholar PubMed PubMed Central

17. Lai, Y., Wang, J., He, T., & Sun, S. (2014). Improved Surface Enhanced Raman Scattering for Nanostructured Silveron Porous Silicon for Ultrasensitive Determination of 2,4,6-Trinitrotoluene. Analytical Letters, 833–842.10.1080/00032719.2013.850089Search in Google Scholar

18. Lee, M., Park, K., & Chung, C. (2000). Diffuse Reflectance Infrared Fourier Transform Spectroscopic (DRIFTS) Study of Self-Assembled Monolayers of 4-Mercaptobenzoic Acid on Ag Powder. The Bulletin of the Korean Chemical Society, 21(5), 532–534.Search in Google Scholar

19. Liang, Y., Yu, Z., Li, L., & Xu, T. (2019). A self-assembled plasmonic opticalfiber nanoprobe for label-freebiosensing. Scientific Reports.Search in Google Scholar

20. Liu, G., Zhang, Y.-M., Xu, X., Zhang, L., & Liu, Y. (2017). Optically Switchable Luminescent Hydrogel by Synergistically Intercalating Photochromic Molecular Rotor into Inorganic Clay. Advanced Optical Materials.10.1002/adom.201700149Search in Google Scholar

21. Ma, X., Huo, H., Wang, W., Tian, Y., Wu, N., Guthy, C., Wang, X. (2010). Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser. Sensors, 11064–11071.10.3390/s101211064Search in Google Scholar PubMed PubMed Central

22. Melekhov, E., Abb, V., Kammler, M. & Lechner, A. (2020). Development of a glass-fiber-based spectrometer for the determination of drug residues in groundwater. Symposium Elektronik und Systemintegration ESI 2020.Search in Google Scholar

23. Michieli, N., Pilot, R., Russo, V., Scian, C., Todescato, F., Signorini, R., Mattei, G. (2017). Oxidation effects on the SERS response of silver nanoprism arrays. The Royal Society of Chemistry, 369–378.10.1039/C6RA26307KSearch in Google Scholar

24. Moskovits, M. (2005). Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy, 36, 485–496. 10.1002/jrs.1362.Search in Google Scholar

25. Mullen, K. I., & Carron, K. T. (1991). Surface-Enhanced Raman Spectroscopy with Abrasively Modified Fiber Optic Probes. American Chemical Society, 2196–2199.10.1021/ac00019a023Search in Google Scholar

26. Oh, Y.-J., & Jeong, K.-H. (2012). Glass Nanopillar Arrays with Nanogap-Rich Silver Nanoislands for Highly Intense Surface Enhanced Raman Scattering. Advanced Materials, 2234–2237.10.1002/adma.201104696Search in Google Scholar PubMed

27. Peterlinz, K. A., & Georgiadis, R. (1996). In Situ Kinetics of Self-Assembly by Surface Plasmon Resonance Spectroscopy. Langmuir, 4731–4740.10.1021/la9508452Search in Google Scholar

28. Quero, G., Zito, G., Managò, S., Galeotti, F., Pisco, M., Luca, A. C., & Cusano, A. (2018). Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes. Sensors.10.3390/s18030680Search in Google Scholar PubMed PubMed Central

29. Rad, M. A., Ibrahim, K., & Mohamed, K. (2012). Atomic force microscopy investigation of surface roughness generated between SiO2 micro-pits in CHF3/Ar plasma. Superlattices and Microstructures, 597–605.10.1016/j.spmi.2012.03.002Search in Google Scholar

30. Raman, C. V., & Krishnan, K. S. (1928). A New Type of Secondary Radiation. Nature, 501–502.10.1038/121501c0Search in Google Scholar

31. Seemann, R., Herminghaus, S., & Jacobs, K. (2001). Dewetting Patterns and Molecular Forces: A Reconciliation. Physical Review Letters, 5534–5537.10.1103/PhysRevLett.86.5534Search in Google Scholar PubMed

32. Smythe, E. J., Dickey, M. D., Bao, J., Whitesides, G. M., & Capasso, F. (2009). Optical Antenna Arrays on a Fiber Facet for in Situ Surface-Enhanced Raman Scattering Detection. Nano Letters, 1132–1138.10.1021/nl803668uSearch in Google Scholar PubMed PubMed Central

33. Sondag-Huethorst, J. A., Schonenberger, C., & Fokkink, L. G. (1994). Formation of Holes in Alkanethiol Monolayers on Gold. Journal of Physical Chemistry, 6826–6834.10.1021/j100078a027Search in Google Scholar

34. Viets, C., & Hill, W. (1998). Comparison of fibre-optic SERS sensors with differently prepared tips. Sensors and Actuators B, 92–99.10.1016/S0925-4005(98)00170-1Search in Google Scholar

35. Wang, Q., & Wang, L. (2020). Lab-on-Fiber: Plasmonic Nano-arrays for Sensing. Nanoscale.10.1039/D0NR00040JSearch in Google Scholar PubMed

36. Xu, H., Aizpurua, J., Käll, M., & Apell, P. (2000). Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. American Physical Society, 4318–4324.10.1103/PhysRevE.62.4318Search in Google Scholar PubMed

37. Yang, X., Ileri, N., Larson, C. C., Carlson, T. C., Britten, J. A., Chang, A. S., Bond, T. C. (2012). Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering. Optics Express, 24819–24826.10.1364/OE.20.024819Search in Google Scholar PubMed

38. Ye, J., & Thompson, C. V. (2010). Mechanisms of complex morphological evolution during solid-state dewetting of single-crystal nickel thin films. Applied Physics Letters.10.1063/1.3480419Search in Google Scholar

Received: 2021-08-12
Accepted: 2021-11-24
Published Online: 2021-12-16
Published in Print: 2022-01-31

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.2.2023 from https://www.degruyter.com/document/doi/10.1515/teme-2021-0093/html
Scroll Up Arrow