Abstract
Measuring the mechanical load on linear guides provides many possibilities regarding predictive maintenance and process monitoring. In this contribution, we provide an in depth evaluation of a Diamond Like Carbon (DLC) based sensor system integrated into the runner block’s raceway that is capable of directly measuring the load on individual rolling elements. An efficient algorithm based on an Extended Kalman Filter (EKF) for local sensor fusion and load estimation is presented and proven to reliably retrieve the load regardless of the rolling element’s position. Afterwards, we compare locally measured loads to results from a theoretical load distribution model, providing valuable insight into modeling parameters and a verification of the sensor measurement principle. In a final step, an algorithm to invert the load distribution model is derived and used for an evaluation of the sensor system, achieving Root-Mean-Square (RMS) estimation errors of equivalently 1.4 kN in the preload range and 2.75 kN overall for one dimensional loads. Load mode distinction was equally successful with a suppression RMS error of 0.7 kN in the preload range and 2.87 kN in total.
Zusammenfassung
Die Lastbestimmung an Linearführungen ist eine mögliche Grundlage für viele Anwendungen im Bereich der vorrausschauenden Wartung und der Prozessüberwachung. In dieser Arbeit wird ein in die Laufbahnen eines Führungswagens integriertes, DLC basiertes Sensorsystem ausführlich untersucht. Dieses System ermöglicht es, die mechanische Last auf einzelnen Wälzkörpern direkt lokal zu messen. Wir entwarfen einen effizienten Algorithmus basierend auf einem EKF für die lokale Sensordatenfusion und konnten demonstrieren, dass sich damit die Last zuverlässig und unabhängig von der Position des betreffenden Wälzkörpers ermitteln lässt. Im Nachgang wurden die lokal ermittelten Lasten mit einem theoretischen Lastverteilungsmodell abgeglichen. Die hieraus gewonnenen Ergebnisse liefern wertvolle Informationen für die Parametrierung des Modells und dienen gleichzeitig als Verifikation des gesamten Messprinzips. Für die abschließende Bewertung des Sensorsystems wurde ein Algorithmus entworfen, der die Bestimmung der äußeren mechanischen Last durch Invertierung des Lastverteilungsmodells ermöglicht. Dabei wurde ein äquivalenter RMS Fehler von 1,4 kN im Vorspannungsbereich erreicht, im gesammten Lastbereich 2,75 kN für eindimensionale Lasten. Die Unterscheidung von Lastfällen war ebenfalls erfolgreich, mit einem verbleibenden RMS Fehler von 0,7 kN im Vorspannungsbereich und 2,87 kN insgesamt in den nicht vorhandenen Lastrichtungen.
Funding statement: This work did not receive any specific grant.
About the authors

David Krampert finished his M.-Sc. studies of Embedded Systems Engineering in 2017 at the Albert-Ludwigs-University Freiburg. In the time from 2018–2021 he was a PhD student at the Albert-Ludwigs-University Freiburg, researching integrated load measurement techniques and sensor concepts in the area of linear guides at the Bosch Rexroth AG. He is now working as a development engineer with a focus on sensors and instrumentation at the Bosch Rexroth AG.

Sebastian Unsleber studied Nano Technology from 2008 until 2012 and finished his PhD thesis at Julius-Maximilians-University Würzburg in 2017. Afterwards, he worked as Software Developer at Preh GmbH & Co. KG and Project Manager at Bosch Rexroth AG in Schweinfurt, where he now holds a position as Senior Manager for Product Management since 2021.

Leonhard Reindl studied Technical Physics at the TU München and accepted a position in the central research and development department of Siemens AG. Here, he developed micro-acoustic components for mobile communication and radar applications and established the research area of wireless identification and radio sensors. At the same time, he was a PhD student at the TU Wien. After 14 years at Siemens AG, he accepted a position as professor at the Institute for Electrical Information Technology at TU Clausthal where he established a research group for radio technology. Starting 2003 until 2020 he held the chair for Electrical Instrumentation at the Institute for Microsystems Technology IMTEK, where he was focused especially on interdisciplinary research close to industry applications. In October 2020 he retired, but he is still overseeing some research and development projects.

Stefan J. Rupitsch studied Mechatronics and finished his PhD thesis at the Johannes Kepler University Linz in 2008. Afterwards, he held different positions at the Friedrich-Alexander-University Erlangen-Nürnberg at the Chair of Sensor Technology. In 2018, he gained his post-doctorate degree in the area Electrical Instrumentation and Sensorics. Starting from December 2020, he is professor and head of the Laboratory for Electrical Instrumentation and Embedded Systems at the Department of Microsystems Engineering (IMTEK) at the Albert-Ludwigs-University Freiburg.
References
1. Herbert Wittel, Dieter Muhs, and Dieter Jannasch. Roloff/Matek Maschinenelemente. Vieweg+Teubner, 2009.10.1007/978-3-8348-9998-9Search in Google Scholar
2. Wieland Hermann Klein. Zustandsüberwachung von Rollen-Profilschienenführungen und Kugelgewindetrieben. Apprimus Verlag, 2011.Search in Google Scholar
3. DIN/ISO. Din iso 14728-1 rolling bearings – linear motion rolling bearings – part 1: Dynamic load ratings and rating life, 2017.Search in Google Scholar
4. Andreas Hirsch, Hanz Georg Hoyer, and Uwe Mahn. Lineare Wälzführungen. Springer-Vieweg, 2019.10.1007/978-3-658-26877-0Search in Google Scholar
5. S. Lenssen and J. Sarfert. Berechnung wälzgelagerter linearführungen. Konstruktion Band 46, pages 209–214, 1994.Search in Google Scholar
6. Li Jinfeng, Wang Liping, and Guan Liwen. Analysis of the vertical stiffness of rolling guide that involves the elastic deformation of carriage skirt. The Open Mechanical Engineering Journal, 9:726–732, 2015.10.2174/1874155X01509010726Search in Google Scholar
7. Van-Canh Tong, Gyungho Khim, Seong-Wok Hong, and Chun-Hong Park. Construction and validation of a theoretical model of the stiffness matrix of a linear ball guide with consideration of carriage flexibility. Mechanism and Machine Theory, 140:123–143, 2019.10.1016/j.mechmachtheory.2019.05.021Search in Google Scholar
8. De-Jun Cheng, Sheng-Hao Xu, Su-Jin Kim, and Sheng-Wen Zhang. Analysis of non-uniform load distribution and stiffness for a preloaded roller linear motion guide. Mechanism and Machine Theory, 164, 2021.10.1016/j.mechmachtheory.2021.104407Search in Google Scholar
9. Feng Qibo, Zhang Bin, Cui Cunxing, Kuang Culfang, Zhai Yusheng, and You Fenglin. Development of a simple system for simulatneously measuring 6dof geometric motion errors of a linear guide. Optics Express, 21(22):25805–25819, 2013.10.1364/OE.21.025805Search in Google Scholar PubMed
10. David Krampert, Sebastian Unsleber, Christoph Janssen, and Leonhard Reindl. Load measurement in linear guides for machine tools. Sensors, 2019.10.3390/s19153411Search in Google Scholar PubMed PubMed Central
11. David Krampert, Sebastian Unsleber, and Leonhard Reindl. Model based evaluation of integrated dlc based sensor system for load measurement on linear guides. In: SMSI 2021 - Sensors and Instrumentations Science International, 2021.10.5162/SMSI2021/A3.2Search in Google Scholar
12. Bosch Rexroth AG. Catalog roller rail systems, 2019.Search in Google Scholar
13. Bosch Rexroth AG. Linear motion technology handbook. Schweinfurt, Germany, 2007.Search in Google Scholar
14. Lucas Guendert, Christoph Janssen, David Krampert, and Sebastian Unsleber. Führungswagen für eine streckenführung, streckenführung mit dem führungswagen, und verfahren zur ermittlung einer last des führungswagens, 2020.Search in Google Scholar
15. H. Lüthje, S. Biehl, R. Bandorf, J. H. Sick, E. Peiner, and A. Tibrewala. Preparation and characterization of multifunctional thin film sensors based on amorphous diamond-like-carbon. Transducers, pages 2111–2114, 2005.10.1109/SENSOR.2005.1497520Search in Google Scholar
16. S. Biehl, H. Lüthje, R. Bandorf, and J. H. Sick. Multifunctional thin film sensors based on amorphous diamond-like carbon for use in tribological applications. Thin Solid Films, 515:1171–1175, 2006.10.1016/j.tsf.2006.07.143Search in Google Scholar
17. A. Tibrewala, E. Peiner, R. Bandorf, S. Biehl, and H. Lüthje. Piezoresistive gauge factor of hydrogenated amorphous carbon films. Journal of Micromechanics and Micorengineering, 16:75–81, 2006.10.1088/0960-1317/16/6/S12Search in Google Scholar
18. A. Tibrewala, E. Peiner, R. Bandorf, S. Biehl, and H. Lüthje. Longitudinal and transversal piezoresistive effect in hydrogenated amorphous carbon films. Thin Solid Films, 515:8028–8033, 2007.10.1016/j.tsf.2007.03.046Search in Google Scholar
19. David Krampert, Mario Ziegler, Sebastian Unsleber, Leonhard Reindl, and Stefan J. Rupitsch. On the stiffness hysteresis of profiled rail guides. Tribology International, 160, August 2021.10.1016/j.triboint.2021.107019Search in Google Scholar
20. Roman Teutsch. Kontaktmodelle und Strategien zur Simulation von Wälzlagern und Wälzführungen. Sauer, Bernd, 2005.Search in Google Scholar
21. K. Kunert. Spannungsverteilung im halbraum bei elliptischer flächenpressungsverteilung über einer rechteckigen druckfläche. Forschung auf dem Gebiete des Ingenieruwesens, 1961.10.1007/BF02561354Search in Google Scholar
22. Joseph V. Poplawski, Erwin V. Zaretsky, and Steven M. Peters. Effect of roller profile in cylindrical roller bearing life prediction. In: 2000 Annual Meeting sponsored by the Society of Tribologists and Lubrication Engineers, 2000.Search in Google Scholar
23. ISO. “iso/st 16281 - rolling bearings - methods for calculating the modified reference rating life for universally loaded bearings. Technical report, ISO, 2008.Search in Google Scholar
24. Danolad W. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 11(2):431–441, 1963.10.1137/0111030Search in Google Scholar
25. R. Schneider and C. Georgakis. How to not make the extended kalman filter fail. Industrial & Engineering Chemistry Research, 52:3354–3362, 2013.10.1021/ie300415dSearch in Google Scholar
26. David Krampert, Sebastian Unsleber, and Leonhard Reindl. Measuring load on linear guides in different load scenarios using an integrated dlc based sensor system. In SMSI 2020 – Sensors and Instrumentation, pages 73–74. AMA, 2020.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston