Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag December 10, 2021

Messung der Homogenität der Strahldichte einer Ulbricht-Kugel mit großer Apertur im SWIR mit einer InGaAs-Infrarotkamera

Spatial homogeneity of the radiance of a large-diameter integrating sphere in the SWIR measured with an InGaAs camera
Sebastian König

S. König received B.E. (2016) in microsystem technology and optical technologies from FH Brandenburg and M.E. (2017) in photonic from TH Wildau, Germany. Since 2017, he has been worked as a Ph.D. student at the PTB in the working group infrared radiation thermometry.

ORCID logo EMAIL logo
, Ingmar Müller

I. Müller studied experimental physics at Humboldt-University in Berlin and received his PhD at Humboldt-University in Berlin in 2013. Since 2009, he has been working at the Physikalisch-Technische Bundesanstalt in Berlin, the national metrology institute in Germany, as a researcher in the department ‘Detector Radiometry and Radiation Thermometry’. He has more than 13 years’ experience in the fields absolute detector-based radiometry, nano-optics, and radiation thermometry in the temperature range below 1000 °C.

and Richard D. Taubert

D. R. Taubert received the diploma (1996) in technical physics from the Technical University in Munich, Germany and Ph.D. (2003) in physics from the Technical University in Berlin, Germany. He is presently a senior scientist and the head of the working group ‘High-temperature scale’ at the national metrology institute of Germany, the Physikalisch-Technische Bundesanstalt (PTB), having more than 20 years experience in detector-/source-based radiometry and radiation thermometry. At PTB, he is responsible for the realization and dissemination of the spectral radiance, the spectral irradiance responsivity and the radiation temperature scale above 1000 °C. He is a member of various technical committees within the standardization bodies DIN and VDI.

From the journal tm - Technisches Messen

Zusammenfassung

Wir stellen die Untersuchung der Homogenität der Strahldichte einer Ulbricht-Kugel mit großer Apertur vor, die mit einer InGaAs-Kamera im Wellenlängenbereich des SWIR gemessen wurde. Ein in der PTB entwickeltes Verfahren wird verwendet, um die Ungleichförmigkeit der relativen spektralen Empfindlichkeit der verwendeten Infrarotkamera zu korrigieren. Es werden verschiedene Konfigurationen untersucht und die Eignung der untersuchten Ulbricht-Kugel zur Charakterisierung von IR-Kameras geprüft. Es wurde festgestellt, dass die Ulbricht-Kugel eine Homogenität ihrer Strahldichte von ±1 % im integralen Wellenlängenbereich von 0,9 µm bis 1,7 µm aufweist.

Abstract

We present the investigation of the spatial homogeneity of the radiance of a large-aperture integrating sphere measured with an InGaAs camera in the SWIR wavelength range. A procedure developed at PTB is used to correct the non-uniformity of the relative spectral responsivity of the infrared camera used. Various configurations of the sphere and the suitability of the integrating sphere for characterizing IR cameras were investigated. The integrating sphere was found having a homogeneity of ±1 % in the integral wavelength range from 0.9 µm to 1.7 µm.

Über die Autoren

Sebastian König

S. König received B.E. (2016) in microsystem technology and optical technologies from FH Brandenburg and M.E. (2017) in photonic from TH Wildau, Germany. Since 2017, he has been worked as a Ph.D. student at the PTB in the working group infrared radiation thermometry.

Ingmar Müller

I. Müller studied experimental physics at Humboldt-University in Berlin and received his PhD at Humboldt-University in Berlin in 2013. Since 2009, he has been working at the Physikalisch-Technische Bundesanstalt in Berlin, the national metrology institute in Germany, as a researcher in the department ‘Detector Radiometry and Radiation Thermometry’. He has more than 13 years’ experience in the fields absolute detector-based radiometry, nano-optics, and radiation thermometry in the temperature range below 1000 °C.

Richard D. Taubert

D. R. Taubert received the diploma (1996) in technical physics from the Technical University in Munich, Germany and Ph.D. (2003) in physics from the Technical University in Berlin, Germany. He is presently a senior scientist and the head of the working group ‘High-temperature scale’ at the national metrology institute of Germany, the Physikalisch-Technische Bundesanstalt (PTB), having more than 20 years experience in detector-/source-based radiometry and radiation thermometry. At PTB, he is responsible for the realization and dissemination of the spectral radiance, the spectral irradiance responsivity and the radiation temperature scale above 1000 °C. He is a member of various technical committees within the standardization bodies DIN and VDI.

Danksagung

Die Autoren danken Berndt Gutschwager und Jörg Hollandt für die intensiven Diskussionen bei der Anwendung und Weiterentwicklung der DRM von den Anfängen im FWIR über das MWIR und SWIR bis hin zum VIS.

Literatur

1. M. P. Hansen and D. S. Malchow “Overview of SWIR detectors, cameras, and applications”, Proc. SPIE 6939, Thermosense XXX, 69390I (17 March 2008); 10.1117/12.777776.Search in Google Scholar

2. J. Hollandt, B. Gutschwager, S. König, and C. Monte, “Strahlungsthermometrische Charakterisierung und Kalibrierung von Thermografiekameras an der Physikalisch-Technischen Bundesanstalt”, DGZfP Jahrestagung (2017), NDT.net Issue: 2017-09.Search in Google Scholar

3. H. Budzier “Radiometrische Kalibrierung ungekühlter Infarrot-Kameras” TUDpress (2014), 120–124.Search in Google Scholar

4. I. Müller, A. Adibekyan, K. Anhalt, C. Baltruschat, B. Gutschwager, S. König, E. Kononogova, C. Monte, M. Reiniger, S. Schiller, D. R. Taubert, D. Urban and J. Hollandt “Non-contact temperature measurement at the Physikalisch-Technische Bundesanstalt (PTB)”, Quantitative InfraRed Thermography Journal (2020), 187–212; 10.1080/17686733.2020.1734392.Search in Google Scholar

5. A. Tempelhahn, H. Budzier, V. Krause, and G. Gerlach “Improving the shutter-less compensation method for TEC-less microbolometer-based infrared cameras”, Proc. SPIE 9451, Infrared Technology and Applications XLI, 94511F (8 June 2015); 10.1117/12.2177003.Search in Google Scholar

6. R. D. Taubert, C. Baltruschat, S. Schiller, and J. Hollandt “Radiometric characterization of a large-aperture variable-radiance calibration source for remote sensing applications”, NEWRAD (2014), 25–26.Search in Google Scholar

7. B. Gutschwager and J. Hollandt “Nonuniformity correction of imaging systems with a spatially nonhomogeneous radiation source”, Applied Optics 54(36) (2015) 10599–10605.10.1364/AO.54.010599Search in Google Scholar PubMed

8. D. G. Goebel “Generalized Integrating-Sphere Theory”, Applied Optics 6 (1967), 125–128.10.1364/AO.6.000125Search in Google Scholar PubMed

9. T. Martin, R. Brubaker, P. Dixon, M.-A. Gagliardi, T. Sudol “640×512 InGaAs focal plane array camera for visible and SWIR imaging”, Proc. SPIE 5783, Infrared Technology and Applications XXXI (31 May 2005); 10.1117/12.603406.Search in Google Scholar

10. M. J. Cohen, G. H. Olsen “Room-temperature InGaAs camera for NIR imaging”, Proc. SPIE 1946, Infrared Detectors and Instrumentation (20 October 1993); 10.1117/12.158695.Search in Google Scholar

11. Datenblatt SC 2500 Firma FLIR (USA); 2009.Search in Google Scholar

12. S. König, B. Gutschwager, J.Hollandt “Nonuniformity determination of infrared imagers by detecting radiance temperatures with the Data Reference Method”, Proc. SPIE 10789, Image and Signal Processing for Remote Sensing XXIV, 1078904 (9 October 2018); 10.1117/12.2325598.Search in Google Scholar

13. M. Vollmer, K.-P. Möllmann “Infrared thermal imaging: fundamentals, research and applications”, John Wiley & Sons (2017), 108–115.10.1002/9783527693306Search in Google Scholar

14. H. Budzier, G. Gerlach “Thermal infrared sensors: theory, optimisation and practice”, John Wiley & Sons (2011), 112–113.10.1002/9780470976913Search in Google Scholar

15. G. C. Holst “Testing and Evaluation of infrared Imaging Systems”, JCD Publishing Co. (1998), 45–48.Search in Google Scholar

16. K. M. Vogelhuber, K. Fulford, R. Serafico, D. Turpen, R. Cooper and S. Schieffer “General methods for the characterization of the nonuniformity of a radiometric calibration source”, Applied Optics 58(18) (2019) 4918–4925.10.1364/AO.58.004918Search in Google Scholar PubMed

Erhalten: 2021-11-05
Angenommen: 2021-11-18
Online erschienen: 2021-12-10
Erschienen im Druck: 2022-01-31

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.1.2023 from https://www.degruyter.com/document/doi/10.1515/teme-2021-0111/html
Scroll Up Arrow