Abstract
To determine step heights between a few nanometers and several micrometers, we present a statistical evaluation procedure which overcomes the limitations of the unambiguity range of conventional multi-wavelength interferometry. The experimental setup consists of a shear interferometer with two different wavelengths to measure the phase difference between light reflected from an object with regions of two different heights. The statistical averaging over a large area of both regions of the object for both wavelengths generates a pair of phase difference values. A diagram of the space of phase values converts the pair of phase difference values into a step height. This statistical method enables the determination of step heights greater than the synthetic wavelength with an accuracy of a few nanometers even with small tilts of the object.
Zusammenfassung
Zur Bestimmung von Stufenhöhen zwischen wenigen Nanometern und mehreren Mikrometern präsentieren wir ein neues statistisches Verfahren, um die Limitierung des Eindeutigkeitsbereiches durch die synthetische Wellenlänge bei der Mehrwellenlängen-Interferometrie zu überwinden. Der experimentelle Aufbau besteht aus einem Scher-Interferometer mit zwei verschiedenen Wellenlängen, mit dem wir die Phasendifferenz des reflektierten Lichts eines Objekts mit zwei unterschiedlichen Höhenbereichen gemessen haben. Durch statistische Mittelung der gemessenen Phasenwerte über größere Flächen für beide Wellenlängen wird ein Phasendifferenz-Wertepaar gebildet. Ein Phasenwert-Diagramm erlaubt es, das Phasendifferenz-Wertepaar in eine Stufenhöhe umzuwandeln. Diese Methode ermöglicht die Bestimmung von größeren Stufenhöhen als die synthetische Wellenlänge auch unter leichter Verkippung auf wenige Nanometer genau.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 430572965
Funding statement: The authors thank the Deutsche Forschungsgemeinschaft (DFG) for funding this research within the frame of project HyperCOMet (grant number 430572965).
About the authors

Corinna Krause did her Master’s degree in the research group of experimental astrophysics at the Faculty of Physics of the University Duisburg-Essen. Since 2020 she works as a research associate in the group “Coherent Optics and Nano-Photonics” at BIAS – Bremen Institute of Applied Beam Technology. Her research interest is optical metrology like multi-wavelength interferometry and digital holography.

Prof. Dr. Ralf B. Bergmann studied physics in Heidelberg and Freiburg, received his doctorate with his work at the Max Plank Institute for Solid State Research (MPI-FKF) from the University of Stuttgart, worked as a postdoc at of the University of New South Wales and habilitated at the University of Freiburg. After leading a research group at the University of Stuttgart he headed the department of applied physics at the central research and advance engineering facility of the Robert Bosch GmbH and later in the Automotive Electronics division. Since 2008 he is a professor at the University of Bremen and head of the Bremen Institute for Applied Beam Technology (BIAS) with the field “Optical Metrology and Optoelectronic Systems”.

Dr. Claas Falldorf studied physics at the University of Bremen, where he received his doctorate at the Faculty of Physics and Electrical Engineering in 2009. Since then he heads the group “Coherent Optics and Nano-Photonics” at BIAS – Bremen Institute of Applied Beam Technology. His research focusses on optical metrology, coherence theory, signal processing and optimization theory.
Acknowledgment
The authors thank R. Klattenhoff for technical support.
References
1. M. Oliva, D. Michaelis, P. Dannberg, M. Józwik, K. Liżewski, M. Kujawińska, U. D. Zeitner, Twyman–Green-type integrated laser interferometer array for parallel MEMS testing, J. Micromech. Microeng. 22 (2011), 015018.10.1088/0960-1317/22/1/015018Search in Google Scholar
2. S. Leveque, C. Falldorf, R. Klattenhoff, A. Cheffot, Day-time local phasing of neighbouring segments of the E-ELT primary mirror, based simultaneous multi-λ shearing interferometry. In: Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II; SPIE, vol. 9912 (2016), pp. 1379–1390.Search in Google Scholar
3. C. Krause, C. Falldorf, R. B. Bergmann, Statistical evaluation process to measure step heights using multi-lambda shear interferometry. In: 122. Jahrestagung der DGaO, B22. https://www.dgao-proceedings.de/download/122/122_b22.pdf.Search in Google Scholar
4. K. Creath, Step height measurement using two-wavelength phase-shifting interferometry, Appl. Opt. 26 (1987), 2810–2816.10.1364/AO.26.002810Search in Google Scholar PubMed
5. Y. Cheng, J. Wyant, Two-wavelength phase shifting interferometry, Appl. Opt. 24 (1985), 804.10.1364/AO.23.004539Search in Google Scholar PubMed
6. H. Zhao, W. Chen, Y. Tan, Phase unwrapping algorithm for the measurement of 3D object shapes, Appl. Opt. 33 (1994), 4497–4500.10.1364/AO.33.004497Search in Google Scholar PubMed
7. C. E. Towers, D. P. Towers, J. D. C. Jones, Generalized multi-frequency selection for full-field interferometric shape measurement. In: Second European Workshop on Optical Fibre Sensors, SPIE, vol. 5502 (2004), pp. 406–409.10.1117/12.566651Search in Google Scholar
8. C. E. Towers, D. P. Towers, J. D. C. Jones, Generalized multi-frequency interferometric techniques for absolute phase measurement. In: Interferometry XII: Techniques and Analysis, SPIE, vol. 5531 (2004), pp. 44–53.10.1117/12.562578Search in Google Scholar
9. C. E. Towers, D. P. Towers, K. Falaggis, Extended range metrology: an age old problem. In: Optical Measurement Systems for Industrial Inspection VII; SPIE, vol. 8082 (2011), pp. 522–530.Search in Google Scholar
10. R. B. Bergmann, M. Kalms, C. Falldorf, Optical in-process measurement: concepts for precise, fast and robust optical metrology for complex measurement situations, Appl. Sci. 11 (2021), 10533.10.3390/app112210533Search in Google Scholar
11. W. J. Bates, A wavefront shearing interferometer, Proc. Phys. Soc. 59 (1947), 940.10.1088/0959-5309/59/6/303Search in Google Scholar
12. M. Takeda, H. Ina, S. Kobayashi, Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry, J. Opt. Soc. Am. 72 (1982), 156–160.10.1364/JOSA.72.000156Search in Google Scholar
13. C. Falldorf, J.-H. Hagemann, G. Ehret, R. B. Bergmann, Sparse light fields in coherent optical metrology, Appl. Opt. 56 (2017), F14–F19.10.1364/AO.56.000F14Search in Google Scholar PubMed
14. C. Falldorf, M. Agour, R. B. Bergmann, Digital holography and quantitative phase contrast imaging using computational shear interferometry, Opt. Eng. 54 (2015), 024110.10.1117/1.OE.54.2.024110Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston