Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag April 23, 2022

Light-sheet fluorescence microscopic probing of silicate materials

Lichtschichtfluoreszenzmikroskopische Untersuchung von Silikatmaterialien
  • Meike Hofmann

    Meike Hofmann received her PhD from Technische Universität Ilmenau in 2013 and spent afterwards four years at the IMTEK, University of Freiburg (Germany) on research in the field of micro- and waveguide optics. Now she is working as a research fellow at the Group of Technische Optik at TU Ilmenau with a focus on special applications of light-sheet fluorescence microscopy.

    ORCID logo EMAIL logo
    , Andreas Herrmann

    Andreas Herrmann received his PhD from Jena University in 2008. He is focussed on the development and characterization of luminescent glasses and glass ceramics, and structure-property relations in these materials. Since 2019 he works as a research fellow at the group of Inorganic Non-Metallic Materials at Ilmenau University of Technology.

    and Ulrike Brokmann

    Ulrike Brokmann received her PhD from Technische Universität Ilmenau in 2005. She works there as a research fellow at the Group of Inorganic- Non Metallic Materials with expertise in the field of micro- and nanostructuring of glasses and glass ceramics, focusing on photosensitive glasses, interaction processes between glasses and (ultra)short pulse laser radiation, wet chemical etching processes for microforming of MOEMS, and tissue engineering applications.

From the journal tm - Technisches Messen

Abstract

Light-sheet fluorescence microscopy (LSFM) is a powerful method for 3D characterization of fluorescent samples. In this contribution we introduce the technique for the application in material analytics by demonstrating the 3D imaging of Ce3+-doped YAG (Y3Al5O12) crystals isolated in a glass matrix. When excited with short wavelength laser radiation, the Ce3+ doping enables fluorescence in the wavelength range between about 450 nm and 680 nm. Since the excitation wavelengths of Ce3+ in the YAG and glass phases of the glass ceramic differ substantially, a suitable laser wavelength can be used to excite only the YAG phase. Thus, an imaging contrast to the surrounding glass matrix is generated. We exploit the crystal dendrites for monitoring the image contrast and improve it by a deconvolution operation of the images. This field of application of LSFM offers great potential, e. g. for fundamental understanding of the microstructuring processes in silicate glasses.

Zusammenfassung

Die Lichtschichtfluoreszenzmikroskopie (LSFM) ist eine leistungsstarke Methode zur 3D-Charakterisierung fluoreszierender Proben. In diesem Beitrag präsentieren wir diese Technik für die Anwendung in der Werkstoffanalyse ein, indem wir die 3D-Bildgebung von Ce3+-dotierten YAG (Y3Al5O12) Kristallen demonstrieren, die in einer Glasmatrix isoliert vorliegen. Bei der Anregung mit Laserlicht im kurzwelligen sichtbaren Spektralbereich führt die Ce3+-Dotierung zu einer Fluoreszenz im Wellenlängenbereich zwischen 450 nm und 680 nm. Da sich die Anregungswellenlängen von Ce3+ in der YAG- und in der Glasphase der Glaskeramik substantiell voneinander unterscheiden, kann durch eine geeignete Wahl der Wellenlänge nur die YAG-Phase angeregt werden. Auf diese Weise kann ein Bildkontrast zur umgebenden Glasmatrix erzeugt werden. Wir verwenden die Dendriten der YAG-Kristalle, um den Bildkontrast zu bewerten und verbessern diesen durch eine Dekonvolutionsoperation der Bilder. Dieses Anwendungsgebiet der LSFM bietet ein großes Potential beispielsweise für das fundamentale Verständnis von Mikrostrukturierungsprozessen in Silikatgläsern.

Funding statement: Seed funding for this initiative has been provided by the “Interne Forschungsförderung” of the Technische Universität Ilmenau and internal means from the involved research groups.

About the authors

Meike Hofmann

Meike Hofmann received her PhD from Technische Universität Ilmenau in 2013 and spent afterwards four years at the IMTEK, University of Freiburg (Germany) on research in the field of micro- and waveguide optics. Now she is working as a research fellow at the Group of Technische Optik at TU Ilmenau with a focus on special applications of light-sheet fluorescence microscopy.

Andreas Herrmann

Andreas Herrmann received his PhD from Jena University in 2008. He is focussed on the development and characterization of luminescent glasses and glass ceramics, and structure-property relations in these materials. Since 2019 he works as a research fellow at the group of Inorganic Non-Metallic Materials at Ilmenau University of Technology.

Ulrike Brokmann

Ulrike Brokmann received her PhD from Technische Universität Ilmenau in 2005. She works there as a research fellow at the Group of Inorganic- Non Metallic Materials with expertise in the field of micro- and nanostructuring of glasses and glass ceramics, focusing on photosensitive glasses, interaction processes between glasses and (ultra)short pulse laser radiation, wet chemical etching processes for microforming of MOEMS, and tissue engineering applications.

References

1. Ignacio Albert-Smet, Asier Marcos-Vidal, Juan José Vaquero, Manuel Desco, Arrate Muñoz-Barrutia, and Jorge Ripoll. Applications of light-sheet microscopy in microdevices. Frontiers in neuroanatomy, 13:1, 2019.10.3389/fnana.2019.00001Search in Google Scholar PubMed PubMed Central

2. Jordi Andilla, Raphael Jorand, Omar E. Olarte, Alexandre C. Dufour, Martine Cazales, Yoann L. E. Montagner, Romain Ceolato, Nicolas Riviere, Jean-Christophe Olivo-Marin, Pablo Loza-Alvarez, and Corinne Lorenzo. Imaging tissue-mimic with light sheet microscopy: A comparative guideline. Scientific reports, 7:44939, 2017.10.1038/srep44939Search in Google Scholar PubMed PubMed Central

3. Ashraf Assadi, Andreas Herrmann, Mehari Tewelde, Kamel Damak, Ramzi Maalej, and Christian Rüssel. Tb X 2 3+ as a probe for the molecular structure of mixed barium magnesium alumino silicate glasses. Journal of Luminescence, 199:384–390, 2018.10.1016/j.jlumin.2018.03.012Search in Google Scholar

4. Arthur D. Edelstein, Mark A. Tsuchida, Nenad Amodaj, Henry Pinkard, Ronald D. Vale, and Nico Stuurman. Advanced methods of microscope control using µmanager software. Journal of biological methods, 1(2), 2014.10.14440/jbm.2014.36Search in Google Scholar PubMed PubMed Central

5. Fuxi Gan. Optical and spectroscopic properties of glass. Springer, Berlin and Heidelberg, 1992.Search in Google Scholar

6. Andreas Herrmann, Hosam A. Othman, Achraf A. Assadi, Mirko Tiegel, Stefan Kuhn, and Christian Rüssel. Spectroscopic properties of cerium-doped aluminosilicate glasses. Optical Materials Express, 5(4):720, 2015.10.1364/OME.5.000720Search in Google Scholar

7. Andreas Herrmann, Christian Rüssel, and Peter Pachler. Ce X 2 3+ doped yttrium aluminum and lutetium aluminum garnet embedded in a soda-lime silica glass by a sintering technique. Optical Materials Express, 5(10):2193, 2015.10.1364/OME.5.002193Search in Google Scholar

8. Andreas Herrmann, Mehari Tewelde, S. Kuhn, M. Tiegel, and Christian Rüssel. The effect of glass composition on the luminescence properties of sm 3 + doped alumino silicate glasses. Journal of Non-Crystalline Solids, 502, 2018.10.1016/j.jnoncrysol.2018.09.008Search in Google Scholar

9. Christian Patzig and Thomas Höche. Microstructure analysis of glasses and glass ceramics. In Pascal Richet, Reinhard Conradt, Akira Takada, and Joël Dyon, editors, Encyclopedia of Glass Science, Technology, History, and Culture, pages 159–172. Wiley, 2021.10.1002/9781118801017.ch2.3Search in Google Scholar

10. Peter G. Pitrone, Johannes Schindelin, Luke Stuyvenberg, Stephan Preibisch, Michael Weber, Kevin W. Eliceiri, Jan Huisken, and Pavel Tomancak. Openspim: An open-access light-sheet microscopy platform. Nature methods, 10(7):598–599, 2013.10.1038/nmeth.2507Search in Google Scholar PubMed PubMed Central

11. Edda Rädlein. Microscopy of coatings. In Robert A. Meyers, editor, Encyclopedia of analytical chemistry: Applications, theory and instrumentation, pages 1787–1825. 2000.Search in Google Scholar

12. Daniel Sage, Lauréne Donati, Ferréol Soulez, Denis Fortun, Guillaume Schmit, Arne Seitz, Romain Guiet, Cédric Vonesch, and Michael Unser. Deconvolutionlab2: An open-source software for deconvolution microscopy. Methods (San Diego, Calif.), 115:28–41, 2017.10.1016/j.ymeth.2016.12.015Search in Google Scholar PubMed

13. Nico Scherf and Jan Huisken. The smart and gentle microscope. Nature Biotechnology, 33(8):815–818, 2015.10.1038/nbt.3310Search in Google Scholar PubMed

14. Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Curtis Rueden, Stephan Saalfeld, Benjamin Schmid, Jean-Yves Tinevez, Daniel James White, Volker Hartenstein, Kevin Eliceiri, Pavel Tomancak, and Albert Cardona. Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7):676–682, 2012.10.1038/nmeth.2019Search in Google Scholar PubMed PubMed Central

15. Yinan Wan, Katie McDole, and Philipp J. Keller. Light-sheet microscopy and its potential for understanding developmental processes. Annual review of cell and developmental biology, 35:655–681, 2019.10.1146/annurev-cellbio-100818-125311Search in Google Scholar PubMed

Received: 2021-12-22
Accepted: 2022-03-24
Published Online: 2022-04-23
Published in Print: 2022-06-30

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2023 from https://www.degruyter.com/document/doi/10.1515/teme-2021-0141/pdf
Scroll to top button