Abstract
The rapidly advancing trend towards miniaturization in the series production of gears confronts quality assurance with new challenges. In this context, metrological technologies as well as expertise from the field of macro gears can only be transferred to a limited extent. Inline integration of metrology into micro gear production has not yet been implemented in a practicable way. This publication extends the current limits of micro gear quality assurance to date by qualifying the optical method of focus variation technology for complete inline measurements of micro gears in series production time. In detail, this work includes the development of a measurement program by means of Design of Experiments, the establishment of a practicable cleaning process, the evaluation of resulting measurement uncertainties, and a process capability analysis. Consequently, the focus variation technology is qualified for fast, three-dimensional measurements of micro gears with respectively low measurement uncertainties.
Zusammenfassung
Der rapide fortschreitende Trend zur Miniaturisierung in der Serienfertigung von Zahnrädern stellt die Qualitätssicherung vor neue Herausforderungen. Messtechnische Verfahren sowie Know-how aus dem Bereich der Makroverzahnungen sind dabei nur bedingt übertragbar. Die Inline-Integration der Messtechnik in die Mikrozahnradfertigung ist deshalb bisher noch nicht hinreichend umgesetzt worden. Der vorliegende Beitrag erweitert die bisherigen Grenzen der Qualitätssicherung von Mikrozahnrädern, indem er das optische Verfahren der Fokusvariation für die vollständige Inline-Messung von Mikrozahnrädern für den Produktionstakt qualifiziert. Im Einzelnen umfasst diese Arbeit die Entwicklung eines Messprogramms mittels Design of Experiments, die Etablierung eines praktikablen Reinigungsprozesses, die Bewertung der resultierenden Messunsicherheiten sowie eine Prozessfähigkeitsanalyse. Im Ergebnis wird die Fokusvariation für schnelle, dreidimensionale Messungen von Mikrozahnrädern mit verhältnismäßig geringen Messunsicherheiten qualifiziert.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 431571877
Funding statement: This research and development project is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Project-ID 431571877. The authors thank the DFG for funding and intensive technical support.
About the authors

Daniel Gauder is currently a research associate at the Institute of Production Sciences (wbk) at the Karlsruhe Institute of Technology (KIT) and holds a B. Sc. in Business Administration and Engineering and a MBA in Production Management. His research interests lie in the field of process optimization through the implementation of in process measurement technology in machine tools.

Johannes Gölz is a research assistant at the wbk Institute for Production Engineering at the Karlsruhe Institute of Technology (KIT).

Alexander Bott is a research assistant at the wbk Institute for Production Engineering at the Karlsruhe Institute of Technology (KIT).

Niels Jung is a research assistant at the wbk Institute for Production Engineering at the Karlsruhe Institute of Technology (KIT).

Prof. Dr.-Ing. Gisela Lanza is member of the management board at the Institute of Production Science (wbk) of the Karlsruhe Institute of Technology (KIT). She heads the Production Systems division dealing with the topics of global production strategies, production system planning, and quality assurance in research and industrial practice.
References
1. Goch, G. (2003). Gear metrology. CIRP annals, 52(2), 659–695.10.1016/S0007-8506(07)60209-1Search in Google Scholar
2. Härtig, F., Schwenke, H., & Weiskirch, C. (2002). Messung von Mikroverzahnungen. VDI Berichte, 1673, 247–258.Search in Google Scholar
3. Jantzen, S., Stein, M., Dietzel, A., & Kniel, K. (2018). Micro gear measurement standards: comparing tactile, optical and computed tomography measurements. In AGMA’s 2018 Fall Technical Meeting.Search in Google Scholar
4. Neuschaefer-Rube, U., Bartscher, M., Neukamm, M., Neugebauer, M., Härtig, F., Goebbels, J. et al. Measurement of micro gears: comparison of optical, tactile-optical, and CT measurements. In Tagungsband SPIE, 78640H.Search in Google Scholar
5. Bruker Alicona (2020). Focus Variation. Bruker Alicona. Available online: https://www.alicona.com/de/fokus-variation.Search in Google Scholar
6. Gauder, D., Gölz, J., Biehler, M., Diener, M., & Lanza, G. (2021). Balancing the trade-off between measurement uncertainty and measurement time in optical metrology using design of experiments, meta-modelling and convex programming. CIRP Journal of Manufacturing Science and Technology, 35, 209–216.10.1016/j.cirpj.2021.06.016Search in Google Scholar
7. Xu, H. Y., Kuo, S. H., Tsai, J. W. H., Ying, J. F., & Lee, G. K. K. (2014). A selective assembly strategy to improve the components’ utilization rate with an application to hard disk drives. The International Journal of Advanced Manufacturing Technology, 75(1-4), 247–255.10.1007/s00170-014-6106-ySearch in Google Scholar
8. BMBF u. Produktion. (2015). Industrie 4.0 – Innovation für die Produktion von morgen. Available online: https://www.bmbf.de/pub/Industrie_4.0.pdf.Search in Google Scholar
9. Kayasa, M. J., & Herrmann, C. (2012). A simulation-based evaluation of selective and adaptive production systems (SAPS) supported by quality strategy in production. Procedia CIRP, 3, 14–19.10.1016/j.procir.2012.07.004Search in Google Scholar
10. Schmitt, R., Monostori, L., Glöckner, H., & Viharos, Z. J. (2012). Design and assessment of quality control loops for stable business processes. CIRP annals, 61(1), 439–444.10.1016/j.cirp.2012.03.055Search in Google Scholar
11. Gauder, D., Wagner, R., Gölz, J., Häfner, B., & Lanza, G. (2019). Funktionsorientierte Qualitätssicherung von Mikrozahnrädern hinsichtlich des Geräuschverhaltens. tm – Technisches Messen, 86(9), 469–477.10.1515/teme-2019-0090Search in Google Scholar
12. Schmitt, R., Permin, E., & Fuhrmann, M. (2014). Cognitive Self-Optimization for quality control loops – potentials and future challenges in research. In Advanced Materials Research (Vol. 1018, pp. 477–484). Trans Tech Publications Ltd.10.4028/www.scientific.net/AMR.1018.477Search in Google Scholar
13. Wagner, R., Fischer, J., Gauder, D., Haefner, B., & Lanza, G. (2020). Virtual In-line Inspection for Function Verification in Serial Production by means of Artificial Intelligence. Procedia CIRP, 92, 63–68.10.1016/j.procir.2020.03.126Search in Google Scholar
14. Schmitt, R., Damm, B. (2008). Prüfen und Messen im Takt. Wie sie mit Inline-Messtechnik ihre Wertschöpfung maximieren. QZ, 53, 57–59.Search in Google Scholar
15. Lanza, G., Haefner, B., Schild, L., Berger, D., Eschner, N., Wagner, R., & Zaiß, M. (2019). In-line measurement technology and quality control. In Metrology (Precision Manufacturing, pp. 399–433).10.1007/978-981-10-4938-5_14Search in Google Scholar
16. Hartmann, W., Hausotte, T., Drummer, D., & Wudy, K. (2012). Anforderungen und Randbedingungen für den Einsatz optischer Messsysteme zur In-Line-Prüfung additiv gefertigter Bauteile. RTejournal-Forum für Rapid Technologie, 2012(1).Search in Google Scholar
17. Weckenmann, A. (2012). Koordinatenmesstechnik: flexible Strategien für funktions-und fertigungsgerechtes Prüfen. Hanser.10.3139/9783446429475Search in Google Scholar
18. Neuschaefer-Rube, U., Bartscher, M., Neukamm, M., Neugebauer, M., Härtig, F., Goebbels, J., & Staude, A. (2011). Measurement of micro gears: comparison of optical, tactile-optical, and CT measurements. In Three-Dimensional Imaging, Interaction, and Measurement (Vol. 7864, p. 78640H). International Society for Optics and Photonics.10.1117/12.872413Search in Google Scholar
19. Newton, L., Senin, N., Gomez, C., Danzl, R., Helmli, F., Blunt, L., & Leach, R. (2019). Areal topography measurement of metal additive surfaces using focus variation microscopy. Additive Manufacturing, 25, 365–389.10.1016/j.addma.2018.11.013Search in Google Scholar
20. Jantzen, S., Neugebauer, M., Meeß, R., Wolpert, C., Dietzel, A., Stein, M., & Kniel, K. (2018). Novel measurement standard for internal involute microgears with modules down to 0.1 mm. Measurement Science and Technology, 29(12), 125012.10.1088/1361-6501/aae6f4Search in Google Scholar
21. VDI 2731:2019 (2019). Mikrogetriebe – Grundlagen/Microgears – Basic principles. Verein Deutscher Ingenieure e. V., VDI-Richtlinie 2731, Beuth, Berlin.Search in Google Scholar
22. Braykoff, C. (2007). Tragfähigkeit kleinmoduliger Zahnräder (Doctoral dissertation, Technische Universität München).Search in Google Scholar
23. VDI/VDE 2617-Part 8 (2018). Accuracy of coordinate measuring machines – Characteristics and their testing – Test process suitability of measurements with coordinate measuring machines. VDI – Verein Deutscher Ingenieure e. V. Beuth Verlag.Search in Google Scholar
24. Leach, R. (2014). Fundamental principles of engineering nanometrology. Elsevier.Search in Google Scholar
25. Kniel, K., Härtig, F., Dunovska, V., & Klemm, M. (2015). Messung von Mikroverzahnungen. Entwicklung von Verfahren zur Eignungsprüfung von Messgeräten für die Mikroverzahnungsmessung. FVA-Forschungsvorhaben 567 II, Heft 1144.Search in Google Scholar
26. Christiaens, K. (2001). Sensitivity and uncertainty of physically based spatially distributed hydrological models (Doctoral dissertation, Katholieke Universiteit Leuven).Search in Google Scholar
27. Mc Kay, M. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245.10.1080/00401706.1979.10489755Search in Google Scholar
28. Yu, P. S., Yang, T. C., & Chen, S. J. (2001). Comparison of uncertainty analysis methods for a distributed rainfall–runoff model. Journal of Hydrology, 244(1-2), 43–59.10.1016/S0022-1694(01)00328-6Search in Google Scholar
29. Helton, J. C., & Davis, F. J. (2000). Sampling-based methods for uncertainty and sensitivity analysis (No. SAND99-2240). Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States).10.2172/760743Search in Google Scholar
30. JCGM 100:2008 (2008). Evaluation of measurement data – guide to the expression of uncertainty in measurement (GUM). Joint Committee for Guides in Metrology.Search in Google Scholar
31. DIN EN ISO 15530-3 (2018). Geometrical Product Specifications (GPS) – Coordinate Measuring Machines (CMM): Technique for Determining the Uncertainty of Measurement – Part 3: Use of Calibrated Workpieces or Measurement Standards. Beuth.Search in Google Scholar
32. VDA-5 (2021). VDA Band 05. Mess-u. Prüfprozesse. Verband der Automobilindustrie e. V. Berlin.Search in Google Scholar
33. ISO 1328-1:2013 (2013). Cylindrical gears – ISO system of flank tolerance classification – Part 1: Definitions and allowable values of deviations relevant to flanks of gear teeth. Beuth Verlag, Berlin.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston