Inadequate decrease at blood PTH level after removing abnormal gland indicates presence of additional hyperfunctioning gland(s). Surgery is stopped after the obtaining targeted PTH value. Postoperative hypocalcemia can be predicted after thyroidectomy. PTH level close to zero is the indication for parathyroid auto-plantation. It is useful for distinguishing parathyroid and non-parathyroid tissues during Surgery. Proper application of ioPTH monitoring into minimal invasive parathyroidectomy has been resulted in highly accurate and equal outcomes in comparison with BNE. Several ioPTH monitoring protocols have been suggested for predicting surgical outcomes. Miami criteria is the most common used one: PTH sampling is performed at 4 time points: pre-skin-incision, pre-gland-excision, 5 minutes post-gland-excision, 10 minutes post-gland-excision. When the PTH value at 10 minutes post-gland-excision decreases >50 percent from the baseline level, surgery can be stopped without further neck exploration. Unless, the surgeon can repeat the PTH level at 20 minutes or exploration is continued to other glands. Although, there is no standart protocol, ioPTH monitoring is used for herediter forms of PHPT and renal hyperparathyroidism. However, blood sampling is generally performed 30 mins after complete resection of hyperfunctioning glands.

D-07
INTRAOPERATIVE BIOMARKERS

Dilek Çimrin
Dokuz Eylül University, Central Laboratory, İzmir

POC testing devices, which provide easy and quick test results for each patient, are regularly improved in recent years. Among point of care tests, the use of tests has been considerably increased for the purpose of providing critical information quickly and thus be helpful to the patient during operations performed to the patient (intra-operative) or diagnostic procedure ran over the patient (intra-procedural). Intraoperative parathyroid hormone (iOPTH) is the most frequently used method, and accordingly such method is very useful for predicting postoperative parathyroid hormone (PTH) level and surgical outcome. The method of the iOPTH analysis is similar to the method of PTH analysis; however, its analysis period has been considerably shortened. Feedback regarding the success of the operation can be immediately received. Accordingly, this avoids repetitive operations in the future.

D-08
ENDOCRINE DISRUPTORS

Nuriye Nuray Ulusu
Koç University, School of Medicine, Department of Biochemistry, Istanbul

Endocrine disruptors are compounds that generally man-made and may interfere with the body's endocrine and other systems. Humans and other organisms are exposed daily to these compounds because they are in our everyday life. Endocrine disruptors are found in the pesticides, herbicides, fungicides, metals, additives, contaminants in food, and personal care products, cosmetics, shampoos, conditioners, hair styling gels, foundations, facial masks, skin creams, deodorants used in the manufacture of some clear plastics (e.g. baby feeding bottles), many medical materials, dialysis machine and dialysate cartridges, toys and buildings, windows, all around everywhere. However, endocrine disruptors may have harmful effects on health. Two years ago the World Health Organization (WHO) has confirmed that human exposure can occur via various ways such as the ingestion of food, dust and water, inhalation of gases and particles in the air, and skin contact. The effects of endocrine disruptors of our body may be either low toxic from acute (short-term) and chronic (long-term) exposures produce developmental malformations, reproductive, neurological, immune effects, obesity, increased cancer risk and cause death in the laboratory experimental animals. The aim of our study was to assess and compare adverse effects of various endocrine disruptors in various doses on prepubertal, pubertal and adult male and female rats. We are measuring various parameters such as: body and tissue weight, histopathological changes, trace elements and minerals and various enzyme activities to understand basic effects of endocrine disruptors.

D-09
FUTURE OF MEDICINE; NEW GENERATION DOCTORS

Aylın GöztAŞ
Ege University, Faculty of Communication, İzmir

Nowadays it is possible to access the database at any time and anywhere. The rapid development of interaction between user and computer systems in the technology of communication, reveals the need for intelligent ecosystems. A system that links every person, every work, every service, every tool to each other with sensor networks, intelligent objects, algorithms always in every context: The objects of the Internet (IoT) are transformed into the internet of everything. Equipped with new / next generation technologies, IoT is an approach that will affect the whole business world and it can be expressed that the intelligent devices and objects are defined one by one in the internet infrastructure and these devices are connected with each other. Such a system in which any data can be retrieved from anywhere at any time, real-time, or in which different data can be collected and analyzed over time, can provide effective solutions in the field of health. Electronic health records, mobile health applications (mHealth etc), data flowing from wearable technologies constitute important inputs of the health data system. USS National Health System, MHIRS Center, Family Appointment System, SSBS Sportsman Health Information System, KKDS Clinical Decision Support System, EBDS Electronic Document Management System, İKDS Drug Decision Support System, HRMS Human Resources Management System, KHYŞ Chronic Disease Management System, E-Pulse Personal Health System, Teletip (phonemed) System, ESIS Barrier-Free Health Communication System, AHBS Family Medicine Information System, HSBS Public Health Information System are electronic health platforms used today in our country. Information technologies are utilized in many areas such as health policy production and management, hospital management, clinical research, preventive medicine approaches, drug use analysis, frauds for health records and assurance systems, community health analysis, risk management, patient relationship management, health coaching. In addition to management approaches, information-processing technologies and the internet have facilitated the evolution of medicine after the perception of “healer doctor” and with the 1900s microbiology theory of medicine, called the second stage of medicine, and the phase of better health care towards the 3rd stage: the molecular medicine in which medicine bends atoms, molecules and genes period. Biotechnology derives from genomics, tissue engineering, human body shop, stem cell, cloning, gene therapy are no longer considered as science-fiction films. How a human resource, that is, a health worker and a physician of such transformation should be, and what characteristics should be carried out? The study focuses on this issue.

D-10
DIABETES MELLITUS AND CANCER

A. Lale Doğan
Hacettepe University, Cancer Institute, Department of Basic Oncology, Ankara

Epidemiologic data suggest that T2DM (Type 2 Diabetes Mellitus) is associated with an increased incidence and mortality from many cancers. Obesity and T2DM triggers carcinogenesis via altering endocrine microenvironment. Pro-tumorigenic molecules mediating this process are listed as, insulin, insulin-like growth factor-1 (IGF-1), leptin, adiponectin and inflammatory cytokines like IL-6 and TNF alpha. Specifically, insulin and IGF-1 bind to their respective cell surface receptors and activate the PI3K/Akt/mTOR and Ras/Raf/MAPK pathways. Insulin and IGF-1 stimulation promote tumorigenesis via mitogenic, antipoptotic and proangiogenic effects. Leptin has proliferative and proangiogenic potential in target tissue while adiponectin is a proapoptotic and antiangiogenic molecule. Increase in leptin/adiponectin ratio is critical in neoplastic transformation. Finally,