condition. In addition, many analyzes such as odor, reductant substance, ketoacids, sulfite test and phenylpyruvic acid test are also used. In addition to these tests useful in the acute phase, many metabolites such as amino acids, fatty acids and organic acids can also be measured using advanced technological chromatographic techniques to guide the diagnosis and treatment of the disease. As a result, early diagnosis and emergency laboratory evaluation is the most important step for success of treatment. A missed diagnosis can lead to lifelong sequel and even death.

D-29
BIOMARKERS IN LYSOSOMAL STORAGE DISEASE: LABORATORY APPROACH
Eser Yıldırım Sözmen
Ege University Faculty of Medicine, Department of Medical Biochemistry, İzmir

Lysosomal storage diseases which are related to deficiency of specific lysosomal hydrolyases resulted to clinical aspects due to accumulation of substrates in different tissues. Since Dried Blood Spot (DBS) is non-invasive, low-cost, easy transportable, acceptable enzyme stability compared to leucocyte and/or fibroblast culture, it’s recommended as a first screening test. As enzyme replacement therapies are available currently, early diagnosis of these diseases is crucial nowadays. The gold standard for diagnosis is determination of enzyme activity in DBS and/or plasma and/or leucocyte samples. Disease diagnosis is verified by determination of genetic mutation in gene of enzyme protein which is specific for LSD. However, a variety of problems such as low accuracy of enzyme activity methods, unknown genetic mutations, high ratio of false positive diagnosis due to methods, complicate the correct diagnosis of these patients. Therefore, clinicians need new biomarkers other than enzyme activity to diagnose and monitor of enzyme replacement therapy of the patients. Recently two types biomarker have been suggested for LSD. 1) Primer biomarkers which are metabolites accumulated in tissue due to enzyme deficiency, found in plasma and/or urine, e.g. glycosaminoglycan in urine of patients with mucopolysaccharidosis, tetrasaccharide in urine of patients with Pompe disease. 2) Secondary biomarkers which are non-specific, increase in serum/urine resulted from damaging of other tissues due to disease, e.g. biomarkers of liver damage and renal damage. Some biomarkers in this group are partially specific to disease. e.g. chitotriosidase which is a macrophage activation marker, increases in blood of patients with Gaucher disease, Niemann Pick disease. Currently, LAMP-1 LAMP-2, some interleukins, saposins and cathepsins as further biomarkers are focus of investigations.

D-30
BIOMARKERS FOR LYSOSOMAL STORAGE DISORDERS: CLINICAL APPROACH
Sema Kalkan Uçar
Ege University Faculty of Medicine Children Metabolism Laboratory
İzmir

Lysosomal storage disorders (LSD) are group of diseases with metabolic defects associated primarily with a disruption in the catabolism and/or transport of by-products of cellular turnover; coupled with the secondary consequences of the accumulation of incompletely metabolized substrates within particular cell types. Initially, the individual disorders were grouped according to the chemical composition of the storage material, e.g. sphingolipidoses (Gaucher, Fabry, Niemann-Pick A/B/C, Metachromatic leukodystrophy, Krabbe disease, Tay-Sachs/Sandhoff disease, GM1-gangliosidosis), mucopolysaccharidoses (Hurler/Scheie, Hunter, Sanfilippo, Morquio, Maroteaux-Lamy, Sly, Natowicz) oligosaccharidoses (Mannosidosis, Sialidosis, Fucosidosis, Aspartylglucosaminuria ) etc. More recently, these disorders have been clustered according to their biochemical or molecular basis. To date, the LSDs encompass at least 250 different clinical entities. LSDs are pernicious, multi-systemic and under diagnosed disorders, frequently with a (sub) clinical onset at pediatric age. Their phenotype is heterogeneous in age of onset, rate of progression and involved organs. Several clinical manifestations, such as hepatosplenomegaly, coarse facial features and skeletal dysplasia, can serve as an important clue for LSD. On presentation, especially in a young child, the diagnosis can be missed, particularly when the family history is uninformative. Therefore, identification of the biomarkers that can serve as a surrogate for or indicator of disease severity, in terms of either overall disease burden or involvement of a particular organ or system is very important. Diagnostic confirmation necessitates biochemical and/or molecular genetic testing. Ideally biomarkers should be easily and cheaply measurable in readily obtained samples (urine/blood) and moreover, their concentration or activity should be found to be greatly elevated in disease states, without overlap in values between affected and healthy subjects, and should change rapidly in response to specific treatment outcomes that are clinically meaningful. The main known markers for LSD are chitotriosidase-CCL18-PARC-ACE-TRAP(Gaucher), globotriaosylceramide (lys欧阳b3)-uramodulin (Fabry) and urinary Glc4-plasma Hex4 (Pompe).

D-31
GENETIC APPROACHES FOR INHERITED METABOLIC DISEASES
Tufan Çankaya
Dokuz Eylül University Faculty of Medicine, Department of Internal Medicine, Department of Medical Genetics, İzmir

Genomic or mitochondrial abnormalities cause congenital disorders and one of the major group of these disorders is inherited metabolic diseases. Metabolic pathways are important for continuity for an organism and particular abnormalities on the pathway affect function of specific proteins and/or enzymes. Inherited metabolic disorders are monogenic disorders which are mainly autosomal recessive manner. Autosomal dominant and X linked patterns affect metabolic pathways less frequently. Small DNA changes can affect inborn errors of metabolism by anomalies of nucleotides which are important for their functionality. For research and/or routine clinical diagnosis, mainly molecular techniques such as Sanger and next generation sequencing are used recently. Molecular genetic analyses and their techniques are highly important issue for diagnosis because it is necessary for genetic counselling and evaluating appropriate treatment opportunities.

D-32
CULTURE OF PRODUCTION
Yasin Yolcu
Rel Assay Diagnostics

Our company founded in 1993 based on all branch of medical sector, but we started the transition for laboratory service because this field was süit for our educate. As we manufacturer company, our thinking based on provide our national culture of production, high technology, sustainable development and inheritance by future generations. We observed that there were gap of scientific and industry and there were not any meeting platform. We observed the Prof. Dr. Özcan EREL’s works on diagnostics field and negotiated the work for industry, Prof. EREL decided that agreed with us for benefit of our national. This was initial model and New step for our country because there were not national precedent on international so many of our decisions and behaviors were first for our country. Our platform of inventors expanded with Doç. Dr. Şahabettin SELEK in time. We observed many unknown before the production so we solved step by step. We attainted international fuar and congress as Turkish company. We decided that take the quality certificates such as KFDA however scientists used the product so we have many international articles by the way the value of our trade mark increased as rapidly. This event supported the our national high technology image for international area. Value of the