FEBS Workshop on Molecular Life Sciences:
Training Tomorrow’s Scientists

self-assessing strategy compared to other approaches and centrally-organized institutions which is opened to 26 000 students. MEFANET cover three main platforms for collaboration and sharing educational objects. As the first, it offers a common gateway to e-publishing web portal. Sophisticated tools for classification of the content, sharing it and controlling access are implemented in the common gateway. The second one is a common installation of learning management system (LMS) Moodle. The third and most surprising one are WikiLectures—a tool for crowd sourcing of educational sources. MEFANET is a community of people, not only a portal to depositories and it consists of more education tools than portal to learning sources. MEFANET is open for the medical schools of any other country. WikiLectures (WikiSkripta in Czech, www.wikiskripta.eu), are very open ensuring maximally effortless contributing and fast updates. WikiLectures are not a dictionary as Wikipedia is; they are rather a textbook with well-defined target reader and specified learning objectives. WikiLectures contains more than 9600 “chapters” and a number is permanently growing. WikiLectures encountered over 40 000 visitors annually. English version is ready and freely opened. WikiSkripta is a vibrant academic community

IS-11
E-MED: AN E-LEARNIG PLATFORM TO AUGMENT AND EVALUATE MEDICAL EDUCATION
Ali Burak Özkkaya
Izmir University of Economics, Faculty of Medicine, Izmir, Turkey
ali.ozkaya@ieu.edu.tr

Electronic learning is an educational model in which computing, internet and related tools are used to augment and mediate teaching and learning. We have implemented e-learning in our curriculum not only as a tool for effective learning but also as an integral part of both execution and evaluation of the medical education program. We have built the platform (E-MED) on Blackboard, one of the most common learning management systems, using almost all functions of the software including customized page design, learning modules, surveys, assignments and assessments. However, the real distinction of the E-MED platform arises from the use of the software’s two less known functions: the analytics module and the goal alignment feature. Analytics module enables close monitoring of student activities within Blackboard course pages as well as student grades obtained from various assessment pieces. We have implemented an advisorship program in which advisors have access to statistical reports of the students in real-time, making it possible to detect patterns of decline in an earlier point and intervene promptly. Advisors discussed these reports with the students in regular meetings and gave feedback in order to improve their performance. The second mentioned function, goal alignment, has been used to introduce all course outcomes of the medical education program to Blackboard. These outcomes then have been aligned to all electronic materials uploaded to the system including presentations, multimedia tools, book chapters, articles, assignments and test questions. Aligned assessment pieces are especially important because with the use of analytics tools we are able to produce reports detailing success of the students in an outcome-based manner. Therefore, for each outcome, we obtained a report containing student success rates which was used in course and program evaluation processes. In conclusion, we have constructed E-MED in order to fully use the advantages of electronic medium in augmenting and evaluating medical education by using outcome alignment and analytics. We believe that this model can be used for future initiatives seeking an analytical way of executing advisorship as well as course and program evaluation. This talk aims to explain key elements of the E-MED platform. Discussion session is preserved for live-demonstration of the system as well as a Q/A session.

IS-12
VIRTUAL LABORATORIES: A TOOL TO SUPPORT LEARNING
Angel Herráez
Biochemistry and Molecular Biology, Dept. of Systems Biology, University of Alcalá, Madrid, Spain

Teaching laboratories often lack the resources to accommodate hands-on experimentation on many modern types of analyses and techniques. This may be due to limitations in the accessibility to suitable samples, lack of equipment, or safety measures that would need to be implemented. There is hence a need for means to provide complete and up-to-date training for students even when real experimentation is not feasible. One solution to fill such a gap is the use of multimedia resources that display such experiments or techniques, another is to run computerised simulations of the experiments. This is useful but still does not provide the full experience; it is particularly desirable to have true spaces for experimenting, in the form of open-ended virtual laboratories, rather than watching animations or videos that always progress in the same way and end with the correct or expected result. Such an open exploration may be very significant for assimilation of the underlying scientific concepts, both methodological and analytical or diagnostic, and to gain relevant professional abilities like experimental design, observation and analysis of results. In this talk, these features will be highlighted while presenting some available resources. Particular attention will be devoted to demonstrate environments that allow users to design their own experiment and explore conditions, amounts, combinations with results that are not prefabricated, but depend on the actual conditions used.

IS-13
USING PROTOPEDIA IN YOUR TEACHING OF BIOMOLECULAR STRUCTURE AND FUNCTION
Angel Herráez
Biochemistry and Molecular Biology, Dept. of Systems Biology, University of Alcalá, Madrid, Spain

Molecular structure is an inherent part of nearly any lesson in biochemistry, necessary to understand both the properties of biomolecules and the interactions among them. There are, however, limitations in this understanding when the student is presented only with two-dimensional depictions of biomolecules, particularly so for bigger ones like proteins and nucleic acids. The use of three-dimensional molecular representations and the possibility of interactively exploring such molecular models are of great help in perceiving multiple issues of structure, interaction and, consequently, function. In this respect, the Proteopedia website offers ready-made materials, free to use, as well as a platform to develop new ones. This talk will provide an introduction to Proteopedia, its content and features, and several ways it can be used in the educational process. Particular attention will be put into how to make profit of Proteopedia, on the one hand to support teaching and on the other hand to entice students towards learning about the structure of biomolecules in an interactive, content-rich medium. In the associated small group session, attendees will have a chance to request more information and also to practice creating their own material in Proteopedia.

IS-14
EUROPEAN SCIENTIFIC POLICY IN LIFE SCIENCES SUGGESTIONS FOR THE FP9
Emmanouil G. Fragkoulis
National and Kapodistrian University of Athens, Greece
FEBS Science and Society Committee

European Scientific policy was for the first time politically endorsed as a major driver for the future of the Europe at Lisbon summit meeting of Heads of State and Government of the European Union in March 2000. “The Lisbon Strategy” as it became known announced a bold agreement by all EU states to work “Towards making the EU the most competitive and dynamic knowledge based in the world, capable of sustained economic growth providing more jobs and achieving greater social cohesion.” Progress in the basic science was then recognized as being as important as innovation.

As is obvious this decision stimulated the scientific community to collaborate in Science Policy issues in order to achieve the goals set up for the “European Research Area” (ERA). Recognizing the need for scientists to act collectively in order to contribute to shape the future of Science Policy in Europe, a pioneering group of European scientists emphasized the need to join forces with other international organizations, to work forwards for the creation of European Research Council with the aim of supporting basic Research.
In September 2005, under UK presidency the political decision was taken to create the ERC for the funding of basic sciences, including social sciences and humanities, by the FP budged. The funding should based on no other criteria than Scientific excellences as defined by independent peer review process as required by the scientific community.

However, two common key points were not included in the initial political agreement and in fact these are still open i: The creation of the ERC as areal European Institute ii. The creation of a mechanism preferably under the ERC umbrella to fund collaborative (Bottom up) basic research. Today, from a position still acts as a powerful blocking factor against greater contributions by scientists to scientific strategic steering of EU science policy.

Anyhow campaign for the creation of ERC and for the funding of bottom up research by the EU-FP exclusively on scientific ground was a unique event in the history of European Science policy. Initially, this was a movement led by some large European Scientific Societies like FEBS and other Euro Science federation joined by a few rather independently managed organization as the ESF, EMBO etc. As well as individual scientists.

Horizon 2020 was Europe’s flagship programme for research and Innovation. Among the main objectives of the program were leverage excellence and foster cross border collaboration, boost the European Health and wealth, close the gap between research and market. Although Horizon is an interesting programme the scientific community has faced it with scepticism. As can be seen from the results of the mid-term evaluation, the main points of criticism are: the low percentage of the budget available for basic research, the overall success rate below 13% (compared with ~20% for FP7), high bureaucracy and problems with reviewer selection.

Towards shaping of FP9 the commission appointed a committee called “Lamy-Hen” level group for assessment. The committee made eleven recommendations and the general group mandate was; “To formulate a vision for the future EU research and Innovation, to draw strategic recommendation on maximizing the impact of EU R&I programmes in the future”.

In the same time Scientific federations between them “Alliance for Biomedical Research in Europe whose FEBS is full and very active member made important recommendations for the EU’s ninth framework programme between them: Strongly support the lamy report’s recommendation in double the overall budget of the next framework programme advocating dedication of 25-30% of the FP9 budget to biomedical and health related research, increased funding for ERC and basic clinical and translation research, improving the low success rate of application through balanced and broader calls, as well as a rigorous selection at 1st stage and continuity in funding for successful networks established in previous frame work programmes.

IS-15 A RESEARCH TRAINING CENTER MODEL: THE WEIZMANN INSTITUTE OF SCIENCE

Israel Pecht
Dept. of Immunology, Weizmann Institute of Science, Rehova, Israel

The Weizmann Institute conducts research and offers graduate education in the breadth of scientific disciplines, with an emphasis on cross-disciplinary investigation. The Weizmann Institute is comprised of five faculties, constituted of 18 departments and additional service units. The Faculty of Chemistry advances the dream of Dr. Chaim Weizmann, an organic chemist, who was the original visionary of the Institute. Research in the Faculty is ranging from theory to experimentation, and from the Nano to the planetary scales. The Faculty of Physics advances research in the physics of complex systems, condensed matter physics, and particle physics and astrophysics. There is about an equal number of experimentalists and theorists. The Faculty of Mathematics consists of the Department of Mathematics and the Department of Computer Science and Applied Mathematics. The research carried out in the faculty ranges from abstract and theoretical studies within mathematics and computer science, through using and applying mathematics and computer science in other sciences, to their application in concrete industrial developments. The Faculty of Biology together with the Faculty of Biochemistry, span research efforts towards understanding of life at all levels, from the molecule to the cell and the entire organism, from immunology, the human brain, to the body’s development and regulatory processes. Biochemistry research focuses on the processes of life at the levels of molecules, cells, organs, and ecosystems. At the basis of all these levels of organization are the biomolecules, including DNA, RNA, proteins, polysaccharides and small molecules. Graduate studies at the Weizmann Institute of Science are conducted through its Fast-Track Graduate School which awards M.Sc. and Ph.D. degrees in life sciences, chemical sciences, mathematics and computer science, and physics. It also awards non-thesis MSc degrees in science education. Graduates go on to senior positions in academia and industry. All students are integrally involved in research conducted at the Institute, working collaboratively with faculty members and postdoctoral fellows. All students receive full scholarships and living stipends so that they can devote their time to research and study.

IS-16 BIOLOGY IN THE THIRD MILLENIUM: TOOLS, PROMISES, CHALLENGES AND ETHICS

Magali Blaud¹, Xavier Coumoul¹ and Jean-Luc Souciet²
¹Université Paris Descartes, Sorbonne Paris Cité, Paris, France
²Université de Strasbourg, France

The early 2000 were characterized by the publication of several eukaryotic genomes of major importance (Homo sapiens or Arabidopsis thaliana for examples, even if the Saccharomyces cerevisiae genome was previously released in 1996) and at the time they were considerate in a critical data sets for future functional analysis. However, an incredible number of new high-throughput technologies (genome, transcriptome, proteome, interactome, metabolome, etc.) directly related to the development of new bioinformatics approaches have emerged each couple of years. The massive usage of these new tools is at the origin of a tremendous acceleration of biological information: an incredible burst of knowledge.

We proposed to observe how few of these new tools for deciphering life have introduced changes to conduct biological analysis; to reveal what was hitherto the domain of the unknown (gut, deep ocean); the link between traditional description of living organism and their genome (the come-back of Natural History); the positive and negative role of “model organisms”.

Due to the genomic tools, the biodiversity so frequently cited but still widely unknown, starts to reveal its incredible complexity. The corresponding data have strongly modified the tree of life and in addition revealing how important is the horizontal transfer of genetic elements. These incredible new data sets, scientifically interpreted, could be used for potential positive application for the human societies as for examples identifications of a new generation of antibiotics; improving teaching efficiency based on brain imaging that facilitate a better understanding of the human brain function in space and time; production of multi-genes fully sequenced and annotated (wheat for example) is a perfect data set to do breeding in a knowledge-based way. In addition genetics tools are used to determine both the function of genetic elements but also to modify all kinds of genomes. This last point was discussed as an important bio-ethical question (43rd FEBS Congress, Prague 2018, July). The consequences of this burst of knowledge are multiples, the high production of data introduce the notions of: data bank quality (EMBL-EBI for ex.), long-term storage of all data, quality of publications and accessibility (paywall and unpaywall), misconducts, fake science, plagiarism and intellectual property. Another consequence for our working group: what to be teach in the future in molecular science education? This is a very important open question.

IS-17 JOINT RESEARCH WITH THE INDUSTRY

Jerka Dumić
University of Zagreb, Faculty of Pharmacy and Bioch., Zagreb, Croatia

During the last few decades the shift from uni-directional flows of funding and innovation between government, academia and industry to the