In September 2005, under UK presidency the political decision was taken to create the ERC for the funding of basic sciences, including social sciences and humanities, by the FP budged. The funding should be based on no other criteria than Scientific excellences as defined by independent peer review process as required by the scientific community. However, two common key points were not included in the initial political agreement and in fact these are still open i: The creation of the ERC as areal European Institute ii. The creation of a mechanism preferably under the ERC umbrella to fund collaborative (Bottom up) basic research. Today, finding a position still acts as a powerful blocking factor against greater contributions by scientists to scientific strategic steering of EU science policy. Anyhow campaign for the creation of ERC and for the funding of bottom up research by the EU-FP exclusively on scientific ground was a unique event in the history of European Science policy. Initially, this was a movement led by some large European Scientific Societies like FEBS and other Euro Science federation joined by a few rather independently managed organization as the ESF, EMBO etc. As well as individual scientists.

Horizon 2020 was Europe’s flagship programme for research and Innovation. Among the main objectives of the program were leverage excellence and foster cross border collaboration, boost the European Health and wealth, close the gap between research and market. Although Horizon is an interesting programme the scientific community has faced it with scepticism. As can be seen from the results of the mid-term evaluation, among the main points of criticism are: the low percentage of the budget available for basic research, the overall success rate below 13% (compared with ~20% for FP7), high bureaucracy and problems with reviewer selection.

Towards shaping of FP9 the commission appointed a committee called “Lamy high level group” for recommendations. The committee made seven recommendations and the general group mandate was: “To formulate a vision for the future EU research and Innovation, to draw strategic recommendation on maximizing the impact of EU R&I programmes in the future”. In the same time Scientific federations between them “Alliance for Biomedical Research in Europe whose FEBS is full and very active member made important recommendations for the EU’s ninth framework programme between them: Strongly support the lamy report’s recommendation in double the overall budget of the next framework programme advocating dedication of 25-30% of the FP9 budget to biomedical and health related research, increased funding for ERC and basic clinical and translation research, improving the low success rate of application through balanced and broader calls, as well as a rigorous selection at 1st stage and continuity in funding for successful networks established in previous frame work programmes.

IS-15 A RESEARCH TRAINING CENTER MODEL: THE WEIZMANN INSTITUTE OF SCIENCE

Israel Pecht
Dept. of Immunology, Weizmann Institute of Science, Rehova, Israel

The Weizmann Institute conducts research and offers graduate education in the breadth of scientific disciplines, with an emphasis on cross-disciplinary investigation. The Weizmann Institute is comprised of five faculties, constituted of 18 departments and additional service units. The Faculty of Chemistry advances the dream of Dr. Chaim Weizmann, an organic chemist, who was the original visionary of the Institute. Research in the Faculty is ranging from theory to experimentation, and from the Nano to the planetary scales. The Faculty of Physics advances the dream of Dr. Chaim Weizmann, an organic chemist, who was the original visionary of the Institute. Based on no other criteria than scientific excellences as defined by independent peer review process, as required by the scientific community, any contribution by scientists to scientific steering of EU science policy is still open. The horizons of science policy are widely unknown, stars are still open in the future.

Turk J Biochem 2018 | Volume 43 | Supplement Issue 4

IS-16 BIOLOGY IN THE THIRD MILLENNIUM: TOOLS, PROMISES, CHALLENGES AND ETHICS

Magali Blaud1, Xavier Cournoul1 and Jean-Luc Souciet2
1Université Paris Descartes, Sorbonne Paris Cité, Paris, France
2Université de Strasbourg, France

The early 2000 were characterized by the publications of several eukaryotic genomes of major importance (Homo sapiens or Arabidopsis thaliana for examples, even if the Saccharomyces cerevisiae genome was previously released in 1996) and at the time they were considered as a critical data sets for future functional analysis. However, an incredible number of new high-throughput technologies (genome, transcriptome, proteome, interactome, metabolome, etc.) directly related to the development of new bioinformatics approaches have emerged each couple of years. The massive usage of these new tools is at the origin of a tremendous acceleration of biological information: an incredible burst of knowledge.

We proposed to observe how few of these new tools for deciphering life have introduced changes to conduct biological analysis; to reveal what was hitherto the domain of the unknown (gut, deep ocean); the link between traditional description of living organism and their genome (the come-back of Natural History); the positive and negative role of “model organisms”.

Due to the genomic tools, the biodiversity so frequently cited but still widely unknown, starts to reveal its incredible complexity. The corresponding data have strongly modified the tree of life and in addition revealing how important is the horizontal transfer of genetic elements. These incredible new data sets, scientifically interpreted, could be used for potential positive application for the human societies as for example identifications of a new generation of antibiotics; improving teaching efficiency based on brain imaging that facilitate a better understanding of the human brain function in space and time; production of culturable genomes fully sequenced and annotated (wheat for example) is a perfect data set to do breeding in a knowledge-based way. In addition genetics tools are used to determine both the function of genetic elements but also to modify all kinds of genomes. This last point was discussed as an important bio-ethical question (43rd FEBS Congress, Prague 2018, July). The consequences of this burst of knowledge are multiples, the high production of data introduce the notions of: data bank quality (EMBL-EBI for ex.), long-term storage of all data, quality of publications and accessibility (paywall and unpaywall), misconducts, fake science, plagiarism and intellectual property. Another consequence for our working group: what to be teach in the future in molecular science education? This is a very important open question.

IS-17 JOINT RESEARCH WITH THE INDUSTRY

Jerka Dumić
University of Zagreb, Faculty of Pharmacy and Bioch., Zagreb, Croatia

During the last few decades the shift from uni-directional flows of funding and innovation between government, academia and industry to the
This talk will focus on the academic possibilities of guiding your career forward. In this aspect, the choices are more numerous than it seems. Within a postdoctoral opportunity, you can actively shape your career by considering how the scientific job can be complemented by additional science-related activities. Making the most of your postdoc is a complex challenge, and this talk will address some helpful tips to achieve this. There are numerous issues to consider both on behalf of the young scientist who wishes to apply for a postdoctoral position as well as for the senior scientists (previous and future supervisors). First of all, it is of high importance that the supervisor recognizes the need of the young scientist to pursue independent research in a new field and in a different lab. The supervisor may facilitate choice of the cognate and relevant future host for the young scientist relying on their research network. Also, the supervisor can help the young scientist by proposing new research fields and promoting possibilities in applications for postdoctoral studies, and may contribute greatly to all aspects listed below. However the major part and responsibilities lie with the young scientists themselves.

Among these responsibilities, some of the most important factors are the following:

1. Identification of interesting, currently yet open, and widely influential research areas.
2. Finding a good postdoctoral position, with a relevant supervisor who is capable of building a mutually beneficial partnership with the young scientist. In this respect, carriers of previous postdoctoral fellows in the lab will be highly revealing.
3. Working on publication skills. Publications are of course the very measure of the success of research studies, so care needs to be taken to proceed with these skills both in manuscript writing and conference presentations.

IS-19 POST-GRADUATE INDUSTRIAL PATH

Jerk Dumić
University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia

Pharmaceutical and biotechnology industry positions have become more attractive to many recent graduates but especially PhD graduates, and consequently highly competitive. According to the Nature’s 2017 Graduate Student Survey more than half of the respondents said that, they would like to work in industry, and nearly one-quarter said an industrial position was what they most wanted (1). Unfortunately, the reports from the employers from pharma and biotech industry indicate the existence of a considerable gap between the skills required by employers and those possessed by recent graduates (2). Therefore, an adequate education and training, as well as skills development that will meet the industry needs, on both graduate and postgraduate level, have become a huge challenge for the universities but also for PhD supervisors. On the graduate level, curricula are predominantly created by the faculty members/academicians thus reflecting their views and expectations, in most cases without consultations with industry. Consequently, curricula might or might not be aligned with student needs upon graduation and entrance into industry positions. Some survey revealed that academic research environment appreciates more knowledge in basic sciences and skills in laboratory and research methodologies, whereas industry appreciates more communication skills, skills related to teamwork and self-efficacy. Yet, both environments equally appreciate skills related to problem solving, self-directed learning, and having a big picture (2). Thus, it is hard to expect from academicians to create and to run curricula that will enable to students the development of the skills needed for the successful industry career, without close and tight collaboration with the colleagues from industry. On the postgraduate level, the problem is relinquished to the supervisors, who often do not have any experience with industry, so not being aware of skill demands. The Nature’s 2017 Graduate Student Survey revealed students’ dissatisfaction with supervisor’s advising regarding student’s careers outside academia, encouragement to attend career training and events, and help with finding future employment, in more than 30% of respondents (3). Thus, many recent graduates are left to themselves regarding the recognising and developing skills needed for industry career. Therefore,