Letter to the Editor

Mi-Hee Kim, Bora Kwon, Seung-Il Jeong, Kang-Yeol Yu and Jiyoung Kim*

Cornuside, identified in *Corni fructus*, suppresses melanin biosynthesis in B16/F10 melanoma cells through tyrosinase inhibition

https://doi.org/10.1515/tjb-2020-0033
Received January 22, 2020; accepted April 11, 2020; published online May 5, 2020

Keywords: *Corni fructus*; cornuside; melanin; tyrosinase.

To the Editor

Objective section: To enhance skin whitening efficacy, tyrosinase activity and melanin biosynthesis should be inhibited in the skin. To achieve this goal, we examined the extract of *Corni fructus* (ECF), and identified cornuside, a functional metabolite in the ECF. Cornuside, identified in the ECF, effectively inhibited melanin biosynthesis in B16/F10 cells, possibly by suppressing tyrosinase activity. Therefore, this study suggests that cornuside can be used as a cosmetic ingredient for skin whitening.

Corni fructus is the fruit of *Cornus officinalis*, and has been widely used as an important herbal medicine in East Asia, including Korea. *C. fructus* has pharmacological efficacies such as cirrhosis, blood pressure strengthening, anticancer and antibacterial effects [1]. Major components of *C. fructus* are gallic acid, malic acid, tartaric acid, ursolic acid, morroniside, loganin and sweoside [2].

Melanin is a biopolymer of phenols widely distributed in nature and is a complex of black pigment and protein. Melanin, which is present in animals, plants and microorganisms, is not essential for growth and development, but is a substance that enhances the viability of any environment. Pigment accumulation in the skin such as blemishes and freckles is due to abnormal increase of melanin pigment in the epidermis and is mainly synthesized in melanosomes of melanocytes present in the epidermis [3]. Tyrosinase, a key enzyme of melanin biosynthesis, initiates melanin biosynthesis by oxidizing tyrosine in melanosomes [4]. In order to increase skin whitening efficacy, melanin biosynthesis and tyrosinase activity need to be inhibited in the skin. In this study, we identified cornuside present in the ECF, and investigated the skin whitening effects of cornuside.

Using the UPLC-MS/MS method, we analyzed a variety of metabolites in ECF, and identified cornuside as a functional metabolite. Cornuside is included in ECF at 0.821 mg/g DW (Figure 1A). Cornuside is a metabolite of the secoiridoid glucoside family and is known to show anti-neoplasmic, anti-inflammatory, hepatoprotective and anti-diabetic effects [5]. We first examined whether cornuside, identified in ECF, shows cytotoxicity in B16/F10 cells. As shown in Figure 1B, cornuside showed no cytotoxicity in B16/F10 cells. Next, we examined whether cornuside shows tyrosinase inhibition. As shown in Figure 1C, cornuside showed about 30% tyrosinase inhibition at a concentration of 50 μg/mL. In addition, cornuside inhibited melanin biosynthesis by about 75% at a concentration of 50 μg/mL (Figure 1D). These results reveal that cornuside, a functional metabolite identified in ECF, can inhibit melanin biosynthesis in B16/F10 cells by inhibiting tyrosinase activity. Therefore, this study suggests that cornuside can be used as a cosmetic ingredient to enhance skin whitening efficacy. The experimental methods used in this study are described in the supplement section.

Funding: This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region (Grant Number: P0002204).

Conflict of interest: The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Mi-Hee Kim and Bora Kwon were equally contributed.

Corresponding author: Jiyoung Kim, Jeonju AgroBio-Materials Institute, Jeonju-si, South Korea, E-mail: jiyoungkim72@gmail.com. https://orcid.org/0000-0002-5258-6889

Mi-Hee Kim, Bora Kwon, Seung-Il Jeong and Kang-Yeol Yu: Jeonju AgroBio-Materials Institute, Jeonju-si, South Korea
Ethical approval: This letter does not contain any studies with human participants or animals performed by any of the authors.

References

Supplementary Material: The online version of this article offers supplementary material (https://doi.org/10.1515/tjb-2020-0033).