Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 11, 2015

Atomic force microscopy as an advanced tool in neuroscience

  • Maja Jazvinšćak Jembrek , Goran Šimić , Patrick R. Hof and Suzana Šegota


This review highlights relevant issues about applications and improvements of atomic force microscopy (AFM) toward a better understanding of neurodegenerative changes at the molecular level with the hope of contributing to the development of effective therapeutic strategies for neurodegenerative illnesses. The basic principles of AFM are briefly discussed in terms of evaluation of experimental data, including the newest PeakForce Quantitative Nanomechanical Mapping (QNM) and the evaluation of Young’s modulus as the crucial elasticity parameter. AFM topography, revealed in imaging mode, can be used to monitor changes in live neurons over time, representing a valuable tool for high-resolution detection and monitoring of neuronal morphology. The mechanical properties of living cells can be quantified by force spectroscopy as well as by new AFM. A variety of applications are described, and their relevance for specific research areas discussed. In addition, imaging as well as non-imaging modes can provide specific information, not only about the structural and mechanical properties of neuronal membranes, but also on the cytoplasm, cell nucleus, and particularly cytoskeletal components. Moreover, new AFM is able to provide detailed insight into physical structure and biochemical interactions in both physiological and pathophysiological conditions.


[1]Power J.D., Fair D.A., Schlaggar B.L., Petersen S.E., The development of human functional brain networks, Neuron, 2010, 67, 735-748 10.1016/j.neuron.2010.08.017Search in Google Scholar PubMed PubMed Central

[2]Sporns O., Structure and function of complex brain networks, Dialogues Clin. Neurosci., 2013, 15, 247-262 10.31887/DCNS.2013.15.3/ospornsSearch in Google Scholar

[3]London M., Häusser M., Dendritic computation, Annu. Rev. Neurosci., 2005, 28, 503-532 10.1146/annurev.neuro.28.061604.135703Search in Google Scholar PubMed

[4]Spruston N., Pyramidal neurons: dendritic structure and synaptic integration, Nat. Rev. Neurosci., 2008, 9, 206-221 10.1038/nrn2286Search in Google Scholar PubMed

[5]Son J.H., Shim J.H., Kim K.H., Ha J.Y., Han J.Y., Neuronal autophagy and neurodegenerative diseases, Exp. Mol. Med., 2012, 44, 89-98 10.3858/emm.2012.44.2.031Search in Google Scholar PubMed PubMed Central

[6]Levenson R.W., Sturm V.E., Haase C.M., Emotional and behavioral symptoms in neurodegenerative disease: a model for studying the neural bases of psychopathology, Annu. Rev. Clin. Psychol., 2014, 10, 581-606 10.1146/annurev-clinpsy-032813-153653Search in Google Scholar PubMed PubMed Central

[7]Luo L., O’Leary D.D., Axon retraction and degeneration in development and disease, Annu. Rev. Neurosci., 2005, 28, 127-156 10.1146/annurev.neuro.28.061604.135632Search in Google Scholar PubMed

[8]Bredesen D.E., Neurodegeneration in Alzheimer’s disease: caspases and synaptic element interdependence, Mol. Neurodegener., 2009, 4, 27 10.1186/1750-1326-4-27Search in Google Scholar PubMed PubMed Central

[9]Vanderhaeghen P., Cheng H.J., Guidance molecules in axon pruning and cell death, Cold Spring Harb. Perspect. Biol., 2010, 2, a001859 10.1101/cshperspect.a001859Search in Google Scholar PubMed PubMed Central

[10]Millecamps S., Julien J.P., Axonal transport deficits and neurodegenerative diseases, Nat. Rev. Neurosci., 2013, 14, 161-176 10.1038/nrn3380Search in Google Scholar PubMed

[11]Hegde M.L., Hegde P.M., Rao K.S., Mitra S., Oxidative genome damage and its repair in neurodegenerative diseases: function of transition metals as a double-edged sword, J. Alzheimers Dis., 2011, 24 (Suppl. 2), 183-198 10.3233/JAD-2011-110281Search in Google Scholar PubMed PubMed Central

[12]Sultana R., Perluigi M., Butterfield D., Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain, Free Rad. Biol. Med., 2013, 62, 157-169 10.1016/j.freeradbiomed.2012.09.027Search in Google Scholar PubMed PubMed Central

[13]Takalo M., Salminen A., Soininen H., Hiltunen M., Haapasalo A., Protein aggregation and degradation mechanisms in neurodegenerative diseases, Am. J. Neurodegener. Dis., 2013, 2, 1-14 Search in Google Scholar

[14]Brettschneider J., Del Tredici K., Lee V.M., Trojanowski J.Q., Spreading of pathology in neurodegenerative diseases: a focus on human studies, Nat. Rev. Neurosci., 2015, 16, 109-120 10.1038/nrn3887Search in Google Scholar PubMed PubMed Central

[15]Weaver J., Single-molecule technique links structural fluctuations of proteins to brain diseases, PLoS Biol., 2012, 10, e1001338 10.1371/journal.pbio.1001338Search in Google Scholar PubMed PubMed Central

[16]Pedersen J.T., Heegaard N.H., Analysis of protein aggregation in neurodegenerative disease, Anal. Chem., 2013, 85, 4215-4227 10.1021/ac400023cSearch in Google Scholar PubMed

[17]Nasrallah I.M., Wolk D.A., Multimodality imaging of Alzheimer disease and other neurodegenerative dementias, 2014, J. Nucl. Med., 55, 2003-2011 10.2967/jnumed.114.141416Search in Google Scholar PubMed PubMed Central

[18]Spedden E., Staii C., Neuron biomechanics probed by atomic force microscopy, Int. J. Mol. Sci., 2013, 14, 16124-16140 10.3390/ijms140816124Search in Google Scholar PubMed PubMed Central

[19]Franze K., Atomic force microscopy and its contribution to understanding the development of the nervous system, Curr. Opin. Genet. Dev., 2011, 21, 530-537 10.1016/j.gde.2011.07.001Search in Google Scholar PubMed

[20]Friedbacher G., Fuchs H., Classification of scanning probe microscopies, Pure Appl. Chem., 1999, 71, 1337-1357 10.1351/pac199971071337Search in Google Scholar

[21]Kuznetsova T.G., Starodubtseva M.N., Yegorenkov N.I., Chizhik S.A., Zhdanov R.I., Atomic force microscopy probing of cell elasticity, Micron, 2007, 38, 824-833 10.1016/j.micron.2007.06.011Search in Google Scholar PubMed

[22]Yang Y., Mayer K.M., Hafner J.H., Quantitative membrane electrostatics with the atomic force microscope, Biophys. J., 2007, 92, 1966-1974 10.1529/biophysj.106.093328Search in Google Scholar PubMed PubMed Central

[23]Carvalho F.A., Santos N.C., Atomic force microscopy-based force spectroscopy - biological and biomedical applications, IUBMB Life, 2012, 64, 465-472 10.1002/iub.1037Search in Google Scholar PubMed

[24]Tessmer I., Kaur P., Lin J., Wang H., Investigating bioconjugation by atomic force microscopy, J. Nanobiotechnology, 2013, 11, 25 10.1186/1477-3155-11-25Search in Google Scholar PubMed PubMed Central

[25]Kim D., Sahin O., Imaging and three-dimensional reconstruction of chemical groups inside a protein complex using atomic force microscopy, Nat. Nanotechnol., 2015, 10, 264-269 10.1038/nnano.2014.335Search in Google Scholar PubMed PubMed Central

[26]Alexander S., Hellemans L., Marti O., Schneir J., Elings V., Hansma P. K., et al., An atomic resolution atomic force microscope implemented using an optical lever, J. Appl. Phys., 1989, 65, 164-167 10.1063/1.342563Search in Google Scholar

[27]Teschke O., de Souza EF., Water molecule clusters measured at water/air interfaces using atomic force microscopy, Phys. Chem. Chem. Phys., 2005, 7, 3856-3865 10.1039/b511257eSearch in Google Scholar PubMed

[28]Ding S.Y., Liu Y.S., Imaging cellulose using atomic force microscopy, Methods Mol. Biol., 2012, 908, 23-30 10.1007/978-1-61779-956-3_3Search in Google Scholar PubMed

[29]Santos S., Billingsley D., Thomson N., Atomic force microscopy imaging of macromolecular complexes, Methods Mol. Biol., 2013, 950, 315-341 10.1007/978-1-62703-137-0_18Search in Google Scholar PubMed

[30]Au N.P., Fang Y., Xi N., Lai K.W., Ma C.H., Probing for chemotherapy-induced peripheral neuropathy in live dorsal root ganglion neurons with atomic force microscopy, Nanomedicine, 2014, 10, 1323-1333 10.1016/j.nano.2014.03.002Search in Google Scholar PubMed

[31]Xiong Y., Lee A.C., Suter D.M., Lee G.U., Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy, Biophys. J., 2009, 96, 5060-5072 10.1016/j.bpj.2009.03.032Search in Google Scholar PubMed PubMed Central

[32]Benzina O., Szabo V., Lucas O., Saab M.B., Cloitre T., Scamps F., et al., Changes induced by peripheral nerve injury in the morphology and nanomechanics of sensory neurons, J. Biomed. Opt., 2013, 18, 106014 10.1117/1.JBO.18.10.106014Search in Google Scholar

[33]Martin M., Benzina O., Szabo V., Vegh A.G., Lucas O., Cloitre T., et al., Morphology and nanomechanics of sensory neurons growth cones following peripheral nerve injury, PLoS One, 2013, 8, e56286 10.1371/journal.pone.0056286Search in Google Scholar

[34]Dufrêne Y.F., Evans E., Engel A., Helenius J., Gaub H.E., Müller D.J., Five challenges to bringing single-molecule force spectroscopy into living cells, Nat. Methods, 2011, 8, 123-127 10.1038/nmeth0211-123Search in Google Scholar

[35]Mustata M., Ritchie K., McNally H.A., Neuronal elasticity as measured by atomic force microscopy, J. Neurosci. Methods, 2010, 186, 35-41 10.1016/j.jneumeth.2009.10.021Search in Google Scholar

[36]McNally H.A., Borgens R.B., Three-dimensional imaging of living and dying neurons with atomic force microscopy, J. Neurocytol., 2004, 33, 251-258 10.1023/B:NEUR.0000030700.48612.0bSearch in Google Scholar

[37]Laishram J., Kondra S., Avossa D., Migliorini E., Lazzarino M., Torre V., A morphological analysis of growth cones of DRG neurons combining atomic force and confocal microscopy, J. Struct. Biol., 2009, 16, 366-377 10.1016/j.jsb.2009.09.005Search in Google Scholar

[38]Wang M.S., Boddapati S., Emadi S., Sierks M.R., Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model, BMC Neurosci., 2010, 11, 57-67 10.1186/1471-2202-11-57Search in Google Scholar

[39]Bustamante C., Rivetti C., Keller D.J., Scanning force microscopy under aqueous solutions, Curr. Opin. Struct. Biol., 1997, 7, 709-716 10.1016/S0959-440X(97)80082-6Search in Google Scholar

[40]Magdesian M.H., Sanchez F.S., Lopez M., Thostrup P., Durisic N., Belkaid W., et al., Atomic force microscopy reveals important differences in axonal resistance to injury, Biophys. J., 2012, 103, 405-414 10.1016/j.bpj.2012.07.003Search in Google Scholar PubMed PubMed Central

[41]McNally H.A., Rajwa B., Sturgis J., Robinson J.P., Comparative three-dimensional imaging of living neurons with confocal and atomic force microscopy, J. Neurosci. Methods, 2005, 142, 177-184 10.1016/j.jneumeth.2004.08.018Search in Google Scholar PubMed

[42]Ricci D., Grattarola M., Tedesco M., The growth cones of living neurons probed by the atomic force microscope, Methods Mol. Biol., 2011, 736, 243-257 10.1007/978-1-61779-105-5_16Search in Google Scholar PubMed

[43]Bernick K.B., Prevost T.P., Suresh S., Socrate S., Biomechanics of single cortical neurons, Acta Biomater., 2011, 7, 1210-1219 10.1016/j.actbio.2010.10.018Search in Google Scholar PubMed PubMed Central

[44]Spedden E., White J.D., Naumova E.N., Kaplan D.L., Staii C., Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy, Biophys. J., 2012, 103, 867-877 10.1016/j.bpj.2012.08.005Search in Google Scholar PubMed PubMed Central

[45]Costa K.D., Single-cell elastography: probing for disease with the atomic force microscope, Dis. Markers, 2003-2004, 19, 139-154 10.1155/2004/482680Search in Google Scholar PubMed PubMed Central

[46]Benoit M., Gaub H.E., Measuring cell adhesion forces with the atomic force microscope at the molecular level, Cells Tissues Organs, 2002, 172, 174-189 10.1159/000066964Search in Google Scholar PubMed

[47]Simon A., Cohen-Bouhacina T., Porté M.C., Aimé J.P., Amédée J., Bareille R., et al., Characterization of dynamic cellular adhesion of osteoblasts using atomic force microscopy, Cytometry A, 2003, 54, 36-47 10.1002/cyto.a.10052Search in Google Scholar PubMed

[48]Murakoshi M., Yoshida N., Iida K., Kumano S., Kobayashi T., Wada H., Local mechanical properties of mouse outer hair cells: atomic force microscopic study, Auris Nasus Larynx, 2006, 33, 149-157 10.1016/j.anl.2005.11.009Search in Google Scholar PubMed

[49]Uttara B., Singh A.V., Zamboni P., Mahajan R.T., Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options, Curr. Neuropharmacol., 2009, 7, 65-74 10.2174/157015909787602823Search in Google Scholar PubMed PubMed Central

[50]Federico A., Cardaioli E., Da Pozzo P., Formichi P., Gallus G.N., Radi E., Mitochondria, oxidative stress and neurodegeneration, J. Neurol. Sci., 2012, 322, 2542-2562 10.1016/j.jns.2012.05.030Search in Google Scholar PubMed

[51]D’Agostino D.P., Olson J.E., Dean J.B., Acute hyperoxia increases lipid peroxidation and induces plasma membrane blebbing in human U87 glioblastoma cells, Neuroscience, 2009, 159, 1011-1022 10.1016/j.neuroscience.2009.01.062Search in Google Scholar PubMed

[52]Singh A.V., Vyas V., Montani E., Cartelli D., Parazzoli D., Oldani A., et al., Investigation of in vitro cytotoxicity of the redox state of ionic iron in neuroblastoma cells, J. Neurosci. Rural Pract., 2012, 3, 301-310 10.4103/0976-3147.102611Search in Google Scholar

[53]Hoskins C., Cuschieri A., Wang L., The cytotoxicity of polycationic iron oxide nanoparticles: Common endpoint assays and alternative approaches for improved understanding of cellular response mechanism, J. Nanobiotechnol., 2012, 10, 15-26 10.1186/1477-3155-10-15Search in Google Scholar

[54]Tiryaki V.M., Khan A.A., Ayres V.M., AFM Feature definition for neural cells on nanofibrillar tissue scaffolds, Scanning, 2012, 34, 316-324 10.1002/sca.21013Search in Google Scholar

[55]Tiryaki V.M., Ayres V.M., Khan A.A., Ahmed I., Shreiber D.I., Meiners S., Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes, Int. J. Nanomed., 2012, 7, 3891-3905 10.2147/IJN.S32681Search in Google Scholar

[56]Keung A.J., de Juan-Pardo E.M., Schaffer D.V., Kumar S., Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells, Stem Cells, 2011, 29, 1886-1897 10.1002/stem.746Search in Google Scholar

[57]Clark C.G., Sun Z., Meininger G.A., Potts J.T., Atomic force microscopy to characterize binding properties of α7-containing nicotinic acetylcholine receptors on neurokinin-1 receptor-expressing medullary respiratory neurons, Exp. Physiol., 2013, 98, 415-424 10.1113/expphysiol.2012.067660Search in Google Scholar

[58]Kawas L.H., Benoist C.C., Harding J.W., Wayman G.A., Abu-Lail N.I., Nanoscale mapping of the Met receptor on hippocampal neurons by AFM and confocal microscopy, Nanomedicine, 2013, 9, 428-438 10.1016/j.nano.2012.08.008Search in Google Scholar

[59]Neuman K.C., Nagy A., Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy, Nat. Methods, 2008, 5, 491-505 10.1038/nmeth.1218Search in Google Scholar

[60]Jiang F.X., Lin D.C., Horkay F., Langrana N.A., Probing mechanical adaptation of neurite outgrowth on a hydrogel material using atomic force microscopy, Ann. Biomed. Eng., 2011, 39, 706-713 10.1007/s10439-010-0194-0Search in Google Scholar

[61]Gomez T. M., Roche F. K., Letourneau P. C., Chick sensory neuronal growth cones distinguish fibronectin from laminin by making substratum contacts that resemble focal contacts, J. Neurobiol., 1996, 29, 18-34 10.1002/(SICI)1097-4695(199601)29:1<18::AID-NEU2>3.0.CO;2-ASearch in Google Scholar

[62]Flanagan L.A., Ju Y.E, Marg B., Osterfield M., Janmey P.A., Neurite branching on deformable substrates, Neuroreport, 2002, 13, 2411-2415 10.1097/00001756-200212200-00007Search in Google Scholar PubMed PubMed Central

[63]Georges P.C., Miller W.J., Meaney D.F, Sawyer E.S., Janmey P.A., Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures, Biophys. J., 2006, 90, 3012-3018 10.1529/biophysj.105.073114Search in Google Scholar PubMed PubMed Central

[64]Lu Y.B., Franze K., Seifert G., Steinhäuser C., Kirchhoff F., Wolburg H., et al., Viscoelastic properties of individual glial cells and neurons in the CNS, Proc. Natl. Acad. Sci. USA, 2006, 103, 17759-17764 10.1073/pnas.0606150103Search in Google Scholar PubMed PubMed Central

[65]Gavazzo P., Vassalli M., Costa D., Pagano A., Novel ncRNAs transcribed by Pol III and elucidation of their functional relevance by biophysical approaches, Front. Cell. Neurosci., 2013, 7, 203 10.3389/fncel.2013.00203Search in Google Scholar PubMed PubMed Central

[66]Lulevich V., Zimmer C.C., Hong H.S., Jin L.W., Liu G.Y., Single-cell mechanics provides a sensitive and quantitative means for probing amyloid-β peptide and neuronal cell interactions, Proc. Natl. Acad. Sci. USA, 2010, 107, 13872-13877 10.1073/pnas.1008341107Search in Google Scholar PubMed PubMed Central

[67]Mescola A., Vella S., Scotto M., Gavazzo P., Canale C., Diaspro A., et al., Probing cytoskeleton organisation of neuroblastoma cells with single-cell force spectroscopy, J. Mol. Recognit., 2012, 25, 270-277 10.1002/jmr.2173Search in Google Scholar PubMed

[68]Hervás R., Oroz J., Galera-Prat A., Goñi O., Valbuena A., Vera A.M., et al., Common features at the start of the neurodegeneration cascade, PLoS Biol., 2012, 10, e1001335 10.1371/journal.pbio.1001335Search in Google Scholar PubMed PubMed Central

[69]Ponce L., Berquand A., Petersen M., Hafner M., Combining atomic force microscopy and live cell imaging to study calcium responses in dorsal root ganglion neurons to a locally applied mechanical stimulus, In: Méndez-Vilas A., Díaz J. (Eds.) Microscopy: science, technology, applications and education, Formatex Research Center, Badajoz, 2010, 530-536 Search in Google Scholar

[70]Tiryaki V.M., Ayres V.M, Ahmed I., Shreiber D.I., Differentiation of reactive-like astrocytes cultured on nanofibrillar and comparative culture surfaces, Nanomedicine, 2015, 10, 529-545 10.2217/nnm.14.33Search in Google Scholar PubMed

[71]Man A., Neurite outgrowth in fibrin gels is regulated by substrate stiffness, Tissue Eng. Part A, 2011, 17, 2931-2942 10.1089/ten.tea.2011.0030Search in Google Scholar PubMed

[72]Fang Y., Iu C.Y., Lui C.N., Zou Y., Fung C.K., Li H.W., et al., Investigating dynamic structural and mechanical changes of neuroblastoma cells associated with glutamate-mediated neurodegeneration, Sci. Rep., 2014, 4, 7074 10.1038/srep07074Search in Google Scholar PubMed PubMed Central

[73]Shibata M., Uchihashi T., Ando T., Yasuda R., Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells, Sci. Rep., 2015, 5, 8724 10.1038/srep08724Search in Google Scholar PubMed PubMed Central

Received: 2015-04-22
Accepted: 2015-06-05
Published Online: 2015-06-11
Published in Print: 2015-01-01

© 2015 Maja Jazvinšćak Jembrek et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.9.2023 from
Scroll to top button