Abstract
A surfactant-mediated cloud point extraction (CPE) method using the non-ionic surfactant Triton X-100 (TX-100) has been developed to remove the dye Direct Blue 71 (DB71) from a waste water. Most of the dye molecules are solubilized in the coacervate phase so that the dilute phase remains free of the dye. The effects of surfactant concentration, temperature and salt concentration on the different dye concentrations were studied to determine the optimal conditions for removing DB71. The concentration of DB71 in the dilute phase was measured using UV-Vis spectrophotometer. It was found that the separation of phases was complete and the recovery of DB71 was very effective in the presence of NaCl as an electrolyte. The results showed that up to 25 ppm DB71, i.e. more than 95%, can be quantitatively removed by cloud point extraction procedures in a single extraction at optimal conditions. It was also observed that at a dye concentration of 1 ppm, 100% of the blue dye DB71 can be directly removed with a TX-100 concentration of 12% by weight. At higher dye concentrations of up to 30 ppm, 94.7%-100% dye can be removed. The TX-100 concentration was 12 wt%, the salt concentration (NaCl) 0.005 M and the temperature 75°C. It is concluded that the surfactant mediated cloud point extraction method for dye removal can be an alternative to current dye removal methods.
Abstract
Es wurde eine tensidvermittelte Trübungspunktextraktions-Methode (CPE) mit dem nichtionischen Tensid Triton X-100 (TX-100) entwickelt, um den Farbstoff Direct Blue 71 (DB71) aus einem Abwasser zu entfernen. Die meisten Farbstoffmoleküle werden in der Koazervatphase löslich gemacht, so dass die verdünnte Phase frei vom Farbstoff bleibt. Die Auswirkungen der Tensidkonzentration, der Temperatur und der Salzkonzentration auf die verschiedenen Farbstoffkonzentrationen wurden untersucht, um die optimalen Bedingungen für die Entfernung von DB71 zu ermitteln. Die Konzentration von DB71 in der verdünnten Phase wurde mit einem UV-Vis-Spektrophotometer gemessen. Es wurde festgestellt, dass die Phasentrennung abgeschlossen und die Rückgewinnung von DB71 in Gegenwart von NaCl als Elektrolyt sehr effektiv war. Die Ergebnisse zeigten, dass bis zu 25 ppm DB71, d. h. mehr als 95%, quantitativ durch Trübungspunktextraktions-Verfahren in einer einzigen Extraktion unter optimalen Bedingungen entfernt werden können. Außerdem wurde beobachtet, dass bei einer Farbstoffkonzentration von 1 ppm eine direkte Entfernung von 100% des blauen Farbstoffs DB71 mit einer TX-100-Konzentration von 12 Gew.-% möglich ist. Bei höheren Farbstoffkonzentrationen von bis zu 30 ppm können 94,7%–100% Farbstoff entfernt werden. Die TX-100-Konzentration betrug 12 Gew.-%, die Salzkonzentration (NaCl) 0,005 M und die Temperatur 75°C. Es wird der Schluss gezogen, dass die tensidvermittelte Trübungspunktextraktions-Methode für die Farbstoffentfernung eine Alternative zu den gegenwärtigen Farbstoffentfernungsverfahren sein kann.
About the author
Dr. Moussa Alibrahim is a Research Director at the Syrian Atomic Energy Commission, Department of Chemistry, his Ph.D specialist in the field of Chemistry and molecular physical chemistry (France-Nancy I University, 1988). His thesis was involved on the [SYSTEMES A BASE DE TENSIOACTIFS NONIONIQUES: INFLUENCE DE COTENSIOACTIFS IONIQUES ET STRUCTURE DES PHASES MESOMORPHES]. His research interests for the time being are focused on the Physical Chemistry of Surfactants, Solvent Extraction and Liquid Crystal. E-mail address: malibrahim@aec.org.sy
Acknowledgements
The author would like to express his grateful to the General Director of Syrian Atomic Energy Commission Prof. I. Othman and the head of Chemistry Department Dr. Z. Ajji for their encouragement to carry out this work. Thanks is extended to Prof. A. W. Allaf for valuable discussion and English corrections.
References
1 Crini, G.: Non-conventional low-cost adsorbents for dye removal: A review. Bioresour Technol. 97 (2006) 1061–1085. PMid:15993052; DOI:10.1016/j.biortech.2005.05.00110.1016/j.biortech.2005.05.001Search in Google Scholar
2 Idel-aouada, R. Valientea, M. Yaacoubib, A. Tanoutic, B. and Lopez-Mesasa, M.: Rapid decolourization and mineralization of the azo dye C.I. Acid Red 14 by heterogeneous Fenton reaction. J. Hazard. Mater. 186 (2011) 745–750. PMid:21145163; DOI:10.1016/j.jhazmat.2010.11.05610.1016/j.jhazmat.2010.11.056Search in Google Scholar
3 Ali, A. Uzair, S. and Faroog, U.: Interactions of Cationic, Anionic and Nonionic Surfactants with Cresol Red Dye in Aqueous Solutions: Conductometric, Tensiometric, and Spectroscopic Studies. Tenside Surf. Det. 54 (2017) 342–352. DOI:10.3139/113.11050910.3139/113.110509Search in Google Scholar
4 Kaur, N., Sharma, S. and Khosla, E.: Green and Efficient Reverse Micellar Extraction and Recovery of Mixed Ionic Dyes from Textile Effluent. Tenside Surf. Det. 55 (2018) 281–286. DOI:10.3139/113.11057210.3139/113.110572Search in Google Scholar
5 Papinutti, L., Mouso, N. and Forchiassin, F.: Removal and degradation of the fungicide dye malachite green from aqueous solution using the system wheat bran–Fomes sclerodermeus. Enzyme Microb. Technol. 39 (2006) 848–853. DOI:10.1016/j.enzmictec.2006.01.01310.1016/j.enzmictec.2006.01.013Search in Google Scholar
6 Glover, B.: Getting rid of colour. J. Soc. Dyer Color. 109 (1993) 273.Search in Google Scholar
7 Golder, A. K., Hridaya, N., Samanta, A. N. and Ray, S.: Electrocoagulation of methylene blue and eosin yellowish using mild steel electrodes. J. Hazard. Mater. 127 (2005) 134–140. PMid:16102898; DOI:10.1016/j.jhazmat.2005.06.03210.1016/j.jhazmat.2005.06.032Search in Google Scholar
8 Purkait, M. K., DasGupta, S. and De, S.: Removal of dye from wastewater using micellar-enhanced ultrafiltration and recovery of surfactant. Sep. Purif. Technol. 37 (2004) 81–92. DOI:10.1016/j.seppur.2003.08.00510.1016/j.seppur.2003.08.005Search in Google Scholar
9 Shu, H. Y., Huang, C. R. and Chang, M. C.: Decolorization of mono-azo dyes in wastewater by advanced oxidation process: A case study of acid red 1 and acid yellow 23. Chemosphere. 29 (1994) 2597–2607. DOI:10.1016/0045-6535(94)90060-410.1016/0045-6535(94)90060-4Search in Google Scholar
10 Marechal, M. L., Slokar, Y. M. and Taufer, T.: Decolouration of chlorotriazine reactive azo dyes with H2O2/UV. Dyes Pigments. Dyes Pigments. 33 (1997) 181–298. DOI:10.1016/S0143-7208(96)00057-510.1016/S0143-7208(96)00057-5Search in Google Scholar
11 Reynolds, G., Graham, N., Perry, R. and Rice, R. G.: Aqueous Ozonation of Pesticides: A Review. Ozone Sci. Eng. 11 (1989) 339–382. DOI:10.1080/0191951890855244710.1080/01919518908552447Search in Google Scholar
12 Silva, A. C., Pic, J. S., Sant’Anna Jr,G. L. and Dezotti, M.: Ozonation of azo dyes (Orange II and Acid Red 27) in saline media. J. Hazardous Materials. 169 (2009) 965–971. PMid:19443113; DOI:10.1016/j.jhazmat.2009.04.05110.1016/j.jhazmat.2009.04.051Search in Google Scholar
13 Chakraborty, S., Purkait, M. K., Dasgupta, S., De, S. and Basu, J. K.: Nanofiltration of textile plant effluent for color removal and reduction in COD. Sep. Purif. Technol. 31 (2003) 141–151. DOI:10.1016/S1383-5866(02)00177-610.1016/S1383-5866(02)00177-6Search in Google Scholar
14 Zeng, G., He, y., Zhan, Y., Zhang, L., Pan, Y., Zhang, C. and Yu, Z.: Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal. J. Hazardous Materials. 317 (2016) 60–72. PMid:27262273; DOI:10.1016/j.jhazmat.2016.05.04910.1016/j.jhazmat.2016.05.049Search in Google Scholar
15 Hairom, N. H. H., Mohammad, A. W. and Kadhum, A. A. H.: Influence of zinc oxide nanoparticles in the nanofiltration of hazardous Congo red dyes. Chemical Engineering Journal. 260 (2015) 907–915. DOI:10.1016/j.cej.2014.08.06810.1016/j.cej.2014.08.068Search in Google Scholar
16 Davis, L. and Randal, C.: Development of color removal potential in organisms treating pulp and paper wastewaters. J. Water Pollut. Cont. Fed. 5 (1978) 382–386.Search in Google Scholar
17 Arvanitoyannis, I., Eleftheriadis, I. and Tsatsaroni, E.: Influence of pH on adsorption of dye-containing effluents with different bentonites. Chemosphere. 18 (1989) 1707–1711. DOI:10.1016/0045-6535(89)90454-210.1016/0045-6535(89)90454-2Search in Google Scholar
18 Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J. and Ahmad, M. N. A.: Sorption behavior of cationic and anionic dyes from aqueous solution on different types of activated carbons. Sep. Sci. Technol. 36 (2001) 91–102. DOI:10.1081/SS-10000085310.1081/SS-100000853Search in Google Scholar
19 Puchana-Rosero, M. J., Adebayo, M. A., Lima, E. D., Machado, F. M., Thue, P. S., Vaghetti, J. C. P., Umpierres, C. S. and Gutterres, M.: Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes. Physicochemical and Engineering Aspects. 504 (2016) 105–115. 10.1016/j.colsurfa.2016.05.059Search in Google Scholar
20 Mahrous, Y. S. and El-Midany, A. A.: Optimization of dye removal by activated carbon prepared from sawdust. Materials Testing. 58 (2016) 155–160. DOI:10.3139/120.11082910.3139/120.110829Search in Google Scholar
21 Alam, S., Ahmad, M. and Bangash, F. K.: Removal of Brilliant Blue R from Aqueous Solutions on Activated Carbon Produced from Carbonaceous Substrate. Tenside Surf. Det. 46 (2009) 205–213. DOI:10.3139/113.11002510.3139/113.110025Search in Google Scholar
22 Jae-Hyun, B., Dong-Ik, S. and Young-Woong, J.: Adsorption of Anionic Dye and Surfactant from Water onto Organomontmorillonite. Sep. Sci. Technol. 35 (2000) 353–365. DOI:10.1081/SS-10010016110.1081/SS-100100161Search in Google Scholar
23 Seshadri, S., Bishop, P. L. and Agha, A. M.: Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste Manage. 15 (1994) 127–137. DOI:10.1016/0956-053X(94)90005-110.1016/0956-053X(94)90005-1Search in Google Scholar
24 Banat, I. M., Nigam, P., Singh, D. and Marchant, R.: Microbial decolorization of textile-dyecontaining effluents. Bioresource Technol. 58 (1996) 217–227. DOI:10.1016/S0960-8524(96)00113-710.1016/S0960-8524(96)00113-7Search in Google Scholar
25 Walker, G. M., Hansen, L., Hann, A. J. and Allen, S. J.: Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Res. 37 (2003) 2081–2089. DOI:10.1016/S0043-1354(02)00540-710.1016/S0043-1354(02)00540-7Search in Google Scholar
26 Gullichson, N. D., Scamehorn, J. F. and Harwell, J. H.: 1989. Liquid-coacervate extraction. In: Scamehorn, J. F., Harwell, J. H. (Eds.), Surfactant Based Separation Processes. Marcel Dekker Inc., New York, pp. 139–152.Search in Google Scholar
27 Kimchuwanit, W., Osuwan, S., Scamehorn, J. F., Harwell, J. H. and Haller, K. J.: Use of a Micellar-Rich Coacervate Phase to Extract Trichloroethylene from Water. Sep. Sci. Technol. 35 (2000) 1991–2002. DOI:10.1081/SS-10010208510.1081/SS-100102085Search in Google Scholar
28 Wang, Z., Zhao, F. and Li, D.: Determination of solubilization of phenol at coa-cervate phase of cloud point extraction. Colloid. Surf. A: Physico. Eng. Aspects. 216 (2003) 207–214. DOI:10.1016/S0927-7757(02)00560-510.1016/S0927-7757(02)00560-5Search in Google Scholar
29 Reffas, H., Benabdallah, T. and Hadj, Y. M.: A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N’-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants. Tenside Surf. Det. 54 (2017) 179–186. DOI:10.3139/113.11048810.3139/113.110488Search in Google Scholar
30 Alibrahim, M.: Cloud Point Extraction of Polycyclic Aromatic Hydrocarbons in Aqueous Solution with Nonionic Surfactants. Tenside Surf. Det. 51 (2014) 333–338. DOI:10.3139/113.11031510.3139/113.110315Search in Google Scholar
31 Hung, K. C., Chen, B. H. and Yu, L. E.: Cloud-point extraction of selected polycyclic aromatic hydrocarbons by nonionic surfactants. Sep. Pur. Technol. 57 (2007) 1–10. DOI:10.1016/j.seppur.2007.03.00410.1016/j.seppur.2007.03.004Search in Google Scholar
32 Mitchell, D. J., Tiddy, G. J. T., Waring, L., Bostock, T. and McDonald, M. P.: Phase behaviour of polyoxyethylene surfactants with water. Mesophase structures and partial miscibility (cloud points). J. Chem. Soc. Faraday Trans. 179 (1983) 975–1000. DOI:10.1039/f1983790097510.1039/f19837900975Search in Google Scholar
33 Strey, R.: Experimental facts: water-nonionic surfactant systems, and the effect of additives. Phys. Chem. 100 (3) (1996) 182–189. DOI:10.1002/bbpc.1996100030310.1002/bbpc.19961000303Search in Google Scholar
34 Holmberg, K., Jonsson, B., Kronberg, B. and Lindman, B.: Surfactants and Polymers in Aqueous solution, Second Ed., Wiley, New York (2003). DOI:10.1002/047085642410.1002/0470856424Search in Google Scholar
35 Lindman, B. and Wennerstrom, H.: Nonionic micelles grow with increasing temperature. J. Phys. Chem. 95 (1991) 6053–6054. DOI:10.1021/j100168a06310.1021/j100168a063Search in Google Scholar
36 Martinez, R., Gonzalo, E., Cordero, B., Pavon, J. L., Pinto, C. and Laespada, E. F.: Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J. Chromatogr. A. 902 (2000) 251–265. DOI:10.1016/S0021-9673(00)00837-210.1016/S0021-9673(00)00837-2Search in Google Scholar
37 Clint, J. H.: Surfactant Aggregation. Blackie, Glasgow. (1992) 154. DOI:10.1007/978-94-011-2272-610.1007/978-94-011-2272-6Search in Google Scholar
38 Nilsson, P., Wennerstrom, H. and Lindman, B.: Structure of micellar solutions of nonionic surfactants. Nuclear magnetic resonance self-diffusion and proton relaxation studies of poly(ethylene oxide) alkyl ethers. J. Phys. Chem. 87 (1983) 1377–1385. DOI:10.1021/j100231a02110.1021/j100231a021Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany