Accessible Requires Authentication Published by De Gruyter July 29, 2021

The Effect of Halide Counter Ions and Methanol on the Foaming Behavior of Cationic Surfactants and a Mechanism Study

Der Einfluss von Halogenid-Gegenionen und Methanol auf das Schaumvermögen von kationischen Tensiden und eine Mechanismusstudie
Yun Bai, Jie Zhang, Sanbao Dong, Shidong Zhu, Manxue Wang, Ya Wu, Chunsheng Pu and Gang Chen

Abstract

In this work, four quaternary ammonium cationic surfactants including cetyltrimethyl ammonium fluoride (CTAF), cetyltrimethyl ammonium chloride (CTAC), cetyltrimethyl ammonium bromide (CTAB) and cetyltrimethyl ammonium iodide (CTAI) were investigated to study the effect of halide anions on the surface activity and foaming performance. The result showed that CTAF had superior surface activity, which could reduce the surface tension of water to 33.15 mN/m at a low CMC (critical micelle formation concentration) of 1.65 mmol/L. Based on the calculation of Amin (the minimum occupied area per surfactant molecule), we assumed that this higher surface activity was related to the small ionic radius of the fluorine ion (F). The foamability and foam stability of CTAF has great advantages over other surfactants studied. On this basis, the factors affecting the formation and stabilization of the CTAF foam were investigated. The results showed that foam formation benefited from high temperatures and low methanol concentration, while high salinity was beneficial for foam stability. When CTAF at a concentration of 0.2% was used as a foaming agent, foaming was excellent at a methanol concentration of 10%, a salinity of 22 ⨯ 104 mg/L, and a temperature of 90°C. With this study, uncertainties that existed in the literature regarding the effect of anion on surface activity and foam performance were explained and the effect of temperature, methanol and salinity on foam generation and stabilization was understood.

Zusammenfassung

In dieser Arbeit wurden die vier kationischen quaternären Ammonium-Tenside Cetyltrimethylammoniumfluorid (CTAF), Cetyltrimethylammoniumchlorid (CTAC), Cetyltrimethylammoniumbromid (CTAB) und Cetyltrimethylammoniumiodid (CTAI) verwendet, um den Einfluss von Anionen (Halogenidionen) auf die Oberflächenaktivität und das Schaumverhalten zu untersuchen. Das Ergebnis zeigte, dass CTAF eine überlegene Oberflächenaktivität hatte, die die Oberflächenspannung von Wasser bis auf 33,15 mN/m bei einer niedrigen CMC (kritische Mizellenbildungskonzentration) von 1,65 mmol/L reduzieren konnte. Aufgrund der Berechnung von Amin (die minimal besetzte Fläche pro Tensidmolekül) vermuteten wir, dass diese höhere Oberflächenaktivität mit dem kleinen Ionenradius des Fluoridions (F) zusammenhing. Die Schaumfähigkeit und Schaumstabilität von CTAF hat große Vorteile gegenüber den anderen untersuchten Tensiden. Auf dieser Grundlage wurden die Faktoren untersucht, die die Bildung und Stabilisierung des CTAF-Schaums beeinflussen. Die Ergebnisse zeigten, dass die Schaumbildung von hohen Temperaturen und geringen Methanolkonzentration profitierte, während für die Schaumstabilität eine hohe Salinität von Vorteil war. Wenn CTAF in einer Konzentration von 0,2% als Schaumbildner verwendet wurde, war die Schaumbildung bei einer Methanolkonzentration von 10%, einem Salzgehalt von 22 ⨯ 104 mg/L und einer Temperatur von 90°C besonders gut. Mit dieser Studie konnten Unklarheiten, die in der Literatur in Bezug auf die Wirkung des Anions auf die Oberflächenaktivität und die Schaumleistung exisitierten, erklärt und die Wirkung von Temperatur, Methanol und Salzgehalt auf die Erzeugung und Stabilisierung von Schaum verstanden werden.


Prof. Dr. Gang Chen Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields Xi’an Shiyou University Xi’an, 710065 China State Key Laboratory of Petroleum Pollution Control CNPC Research Institute of Safety and Environmental Technology Beijing, 102206 China
Dr. Chunsheng Pu School of Petroleum Engineering Petroleum University of China (Huadong) Qingdao, 266580 China

Acknowledgements

This work was financially supported by the grants from National Science Foundation of China (41202214, 51774184), Shaanxi Key Research and Development Program (2019 KW-061), and Open Foundation of Shaanxi Key Laboratory of Lacustrine Shale Gas Accumulation and Exploitation (Under planning). And we thank the support of The Youth Innovation Team of Shaanxi Universities and Modern Analysis and Testing Center of Xi’an Shiyou University.

References

1 Zhou, M., Zhao, J., Wang, X. and Yang, Y.: Research on Surfactant Flooding in High-temperature and High-salinity Reservoir for Enhanced Oil Recovery, Ten-side Surfactants Detergents. 50 (2013) 175–181. DOI:10.3139/113.110245 Search in Google Scholar

2 Chen, G., Cheng, C., Zhang, J., Sun, Y., Hu, Q., Qu, C. T. and Dong, S. B.: Synergistic effect of surfactant and alkali on the treatment of oil sludge, Journal of Petroleum Science and Engineering. 183 (2019) 106420. DOI:10.1016/j.petrol.2019.106420 Search in Google Scholar

3 Chen, G., Bai, Y., Liu, Q. N., Zhang, J., Gu, X. F., Li, H., Qu, C. T. and Zhang, Y. M.: Synthesis and interface activity of a series of dicarboxylic cationic surfactants and structure-efficiency relationship study, Journal of Surfactants and Detergents. 22 (2019) 691–698. DOI:10.1002/jsde.12264 Search in Google Scholar

4 Durán-Álvarez, A., Maldonado-Domínguez, M., González-Antonio, O., Durán-Valencia, C. and Romero-Ávila, M.: Experimental-theoretical approach to the adsorption mechanisms for anionic, cationic, and zwitterionic surfactants at the calcite-water interface, Langmuir. 32 (2016) 2608–2616. PMid:26915667; DOI:10.1021/acs.langmuir.5b04151 Search in Google Scholar

5 Golub, T. P., Koopal, L. K. and Sidorova, M. P.: Adsorption of cationic surfactants on silica surface: 1. Adsorption isotherms and surface charge, Colloid Journal. 66 (2004) 38–43. DOI:10.1023/B:COLL.0000015053.71438.fd Search in Google Scholar

6 Tan, S. N., Fornasiero, D., Sedev, R. and Ralston, J.: The role of surfactant structure on foam behaviour, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 263 (2005) 233–238. DOI:10.1016/j.colsurfa.2004.12.060 Search in Google Scholar

7 Petkova, B., Tcholakova, S. and Chenkova, M.: Foamability of aqueous solutions: Role of surfactant type and concentration, Advances in Colloid and Interface Science. 276 (2020) 102084. PMid:31884021; DOI:10.1016/j.cis.2019.102084 Search in Google Scholar

8 Fameau, A. L., Ventureira, J. and Novales, B.: Foaming and emulsifying properties of fatty acids neutralized by tetrabutylammonium hydroxide, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 403 (2012) 87–95. DOI:10.1016/j.colsurfa.2013.03.059 Search in Google Scholar

9 Heerschap, S., Marafino, J. N., McKenna, K. and Caran, K. L.: Foams stabilized by tricationic amphiphilic surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 487 (2015) 190–197. DOI:10.1016/j.colsurfa.2015.09.025 Search in Google Scholar

10 Majeed, T., Sølling, T. I. and Kamal, M. S.: Foamstability: The interplay between salt-, surfactant- and critical micelle concentration, Journal of Petroleum Science and Engineering. 187 (2020) 106871. DOI:10.1016/j.petrol.2019.106871 Search in Google Scholar

11 Zhao, L., Li, A. F., Chen, K., Tang, J. J. and Fu, S. S.: Development and evaluation of foaming agents for high salinity tolerance, Journal of Petroleum Science and Engineering. 81 (2012) 18–23. DOI:10.1016/j.petrol.2011.11.006 Search in Google Scholar

12 Sun, L., Wei, P., Pu, W. F. and Zhang, Y. C.: Experimental Validation of the temperature-resistant and salt-tolerant Xanthan enhanced foam for enhancing oil recovery, Journal of Dispersion Science and Technology. 36 (2015) 1693–1703. DOI:10.1080/01932691.2014.1003563 Search in Google Scholar

13 Amro, S., Chen, H., Reddy, P. P. and Cui, L. Y.: Switchable amine surfactants for stable CO2/Brine foams in high temperature, high salinity reservoirs, SPE. (2014) 169041. Search in Google Scholar

14 Wang, Y. K., Jiang, Y. J., Geng, T. and Ju, H. B.: Synthesis, surface/interfacial properties, and biological activity of amide-based Gemini cationic surfactants with hydroxyl in the spacer group, Colloids and Surfaces A. 563 (2019) 1–10. DOI:10.1016/j.colsurfa.2018.11.061 Search in Google Scholar

15 Peng, Y. Y., Lu, F. and Tong, Q. X.: One-step synthesis, wettability and foaming properties of high-performance non-ionic hydro-fluorocarbon hybrid surfactants, Applied Surface Science. 433 (2018) 264–270. DOI:10.1016/j.apsusc.2017.10.012 Search in Google Scholar

16 Pu, W. F., Wei, P., Sun, L., Jin, F. Y. and Wang, S.: Experimental investigation of viscoelastic polymers for stabilizing foam, Journal of Industrial and Engineering Chemistry. 47 (2017) 360–367. DOI:10.1016/j.jiec.2016.12.006 Search in Google Scholar

17 Pal, M., Samanta, K. and Mandal, A.: A novel family of non-ionic gemini surfactants derived from sunflower oil: Synthesis, characterization and physicochemical evaluation, Journal of Molecular Liquids. 275 (2019) 638–653. DOI:10.1016/j.molliq.2018.11.111 Search in Google Scholar

18 Dai, C., Fang, S. S., Hu, M., He, X. J. and Zhao, M. W.: Synthesis, surface adsorption and micelle formation of a class of morpholinium gemini surfactants, Journal of Industrial and Engineering Chemistry. 54 (2017) 226–233. DOI:10.1016/j.jiec.2017.05.037 Search in Google Scholar

19 Li, P., Guo, Y. X., Lu, Z., Zhang, W. Z. and Hou, L. X.: Syntheses, surface activities and aggregation morphologies of a series of novel itaconic acid based asymmetrical gemini surfactants, Journal of Molecular Liquids. 290 (2019) 111218. DOI:10.1016/j.molliq.2019.111218 Search in Google Scholar

20 Stubenrauch, C., Shrestha, L. K., Varade, D., Johansson, I. and Olanya, G.: Aqueous foams stabilized by n-dodecyl-beta-D-maltoside, hex-aethy-leneglycol monododecyl ether, and their 1:1 mixture, Soft Matter. 5 (2009) 3070–3080. DOI:10.1039/b903125a Search in Google Scholar

21 Pugh, R. J.: Foaming, foam films, antifoaming and defoaming, Advances in Colloid and Interface Science. 64 (1996) 67–142; (95) 00280–4. DOI:10.1016/0001-8686 Search in Google Scholar

22 Fameau, A. L., Saint-Jalmes, A., Cousin, F., Houssou, B. H., Novales, B., Navailles, L. and Nallet F. : Smart foams: switching reversibly between ultrastable and unstable foams, Angewandte Chemie-Internatioanal Edition. 50 (2011) 8414–8419. DOI:10.1002/anie.201102115 Search in Google Scholar

23 Wu, X., Zhao, J., Li, E. and Zou, W.: Interfacial dilational viscoelasticity and foam stability in quaternary ammonium gemini surfactant systems: influence of intermolecular hydrogen bonding, Colloid and Polymer Science. 289 (2011) 1025–1034. DOI:10.1007/s00396-011-2425-9 Search in Google Scholar

24 Chapelain, J. C. M., Faure, S. and Beneventi, D.: Clay flotation: effect of TTAB cationic surfactant on foaming and stability of illite clay microaggregates foams, Industrial & Engineering Chemistry Research. 55 (2016) 2191–2201. DOI:10.1021/acs.iecr.5b04450 Search in Google Scholar

25 Jones, S. A., Van der Bent, V., Farajzadeh, R., Rossen, W. R. and Vincent-Bonnieu, S.: Surfactant screening for foam eor: correlation between bulk and core-flood experiments, Colloids and Surfaces A. 500 (2016) 166–176. DOI:10.1016/j.colsurfa.2016.03.072 Search in Google Scholar

26 Pal, S., Mushtaq, M., Banat, F. and Al Sumaiti, A. M.: Review of surfactant-assisted chemical enhanced oil recovery for carbonate reservoirs: challenges and future perspectives, Petrolum Science. 15 (2018) 77–102. DOI:10.1007/s12182-017-0198-6 Search in Google Scholar

27 Zhao, H. X., He, C. X., Zhou, Y. W., Yang, J., Luo, C. and Xu, B. C.: Study on foaming properties of N-acyl amino acid surfactants: Sodium N-acyl glycinate and sodium N-acyl phenylalaninate, Colloids and Surfaces A. 567 (2019) 240–248. DOI:10.1016/j.colsurfa.2019.01.073 Search in Google Scholar

28 Zhao, J., Dai, C. and Ding, Q.: The Structure effect on the surface and interfacial properties of zwitterionic sulfobetaine surfactants for enhanced oil recovery, RSC Advances. 5 (2015) 13993–14001. DOI:10.1039/C4RA16235H Search in Google Scholar

29 Sheng, Y. J., Jiang, N., Lu, S. X., Zhao, Y. L. and Wang, Q. H.: Molecular interaction and foaming property of the mixtures of hydrocarbon, fluorocarbon and silicone surfactants, Journal of Molecular Liquids. 296 (2019) 111836. DOI:10.1016/j.molliq.2019.111836 Search in Google Scholar

30 Rosen, M. J. and Kunjappu, J. T.: Surfactants and interfacial phenomena, Hoboken, NJ: Wiley 2012. DOI:10.1002/9781118228920 Search in Google Scholar

31 Sheng, Y. J., Wu, X. J., Lu, S. X. and Li, C. H.: Experimental study on foam properties of mixed systems of silicone and hydrocarbon surfactants. Journal of Surfactants and Detergents, 19 (2016) 823–831. DOI: 10.1007/s11743-017-1944-x Search in Google Scholar

32 Li, B. F., Li, H. F., Cao, A. Q. and Wang, F.: Effect of surfactant concentration on foam texture and flow characteristics in porous media, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 560 (2019) 189–197. DOI:10.1016/j.colsurfa.2018.10.027 Search in Google Scholar

33 Wang, H. T., Guo, W. B., Zheng, C. B., Wang, D. M. and Zhan, H. H.: Effect of temperature on foaming ability and foam stability of typical surfactants used for foaming agent, Journal of Surfactants and Detergents. 20 (2017) 615–622. DOI:10.1007/s11743-017-1953-9 Search in Google Scholar

34 Sun, L., Wei, P., Pu, W. F., Wang. B., Wu, Y. J. and Tan, T.: The oil recovery enhancement by nitrogen foam in high-temperature and high-salinity environments, Journal of Petroleum Science and Engineering. 147 (2016) 485–494. DOI:10.1016/j.petrol.2016.09.023 Search in Google Scholar

35 Yoshimura, T. and Ichinokawa, T.: Synthesis and surface-active properties of sulfobetaine-type zwitterionic Gemini surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 273 (2006) 208–212. DOI:10.1016/j.colsurfa.2005.08.023 Search in Google Scholar

36 Goncharik, I. I., Mozheilo, F. F. and Voitenko, A. I.: Effect of inorganic electrolytes and aliphatic alcohols on the foaming capacity of sodium salts of carboxylic acids, Physicochemical Studies of Systems and Processes. 83 (2010) 636–640. DOI:10.1134/S1070427210040129 Search in Google Scholar

37 Iglauer, S., Wu, Y. F., Shuler, P. and Tang, Y. C.: Alkyl polyglycoside surfactant-alcohol cosolvent formulations for improved oil recovery, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 339 (2009) 48–59. DOI:10.1016/j.colsurfa.2009 Search in Google Scholar

38 Behera, M. R., Varade, S. R., Ghosh, P. and Paul, P.: Foaming in micellar solutions: effects of surfactant, salt, and oil concentrations, Industrial & Engineering Chemistry Research. 53 (2014) 18497–18507. DOI:10.1021/ie503591v Search in Google Scholar

39 Varade, S. R. and Ghosh, P.: Foaming in aqueous solutions of zwitterionic surfactant: effects of oil and salts, Journal of Dispersion Science and Technology. 38 (2017) 1770–1784. DOI:10.1080/01932691.2017.1283509 Search in Google Scholar

40 Xu, Q., Nakajima, M., Ichikawa, S., Nakamura, N. and Roy, P.: Effects of surfactant and electrolyte concentrations on bubble formation and stabilization, Journal of Colloid and Interface Science. 332 (2009) 208–214. PMid:19144348; DOI:10.1016/j.jcis.2008.12.044 Search in Google Scholar

41 Xu, Q., Nakajima, M., Ichikawa, S. and Nakamura, N.: Effects of surfactant and electrolyte concentrations on bubble formation and stabilization, Journal of Colloid and Interface Science. 332 (2009) 208–214. PMid:19144348; DOI:10.1016/j.jcis.2008.12.044 Search in Google Scholar

42 Firouzi, M. and Nguyen, A. V.: Effects of monovalent anions and cations on drainage and lifetime of foam films at different interface approach speeds, Advanced Powder Technology. 25 (2014) 1212–1219. DOI:10.1016/j.apt.2014.06.004 Search in Google Scholar

Received: 2020-02-07
Accepted: 2020-06-08
Published Online: 2021-07-29
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston