Accessible Requires Authentication Published by De Gruyter September 25, 2021

Synthesis and Aggregation of Novel Sugar-based Gemini Surfactants in Aqueous Solution

Synthese und Aggregation von neuartigen zuckerbasierten Gemini-Tensiden in wässriger Lösung
Ruijuan Wang, Yu Lei, Zikun Mei, Dong Wang and Zhigang Yin

Abstract

Novel sugar-based gemini surfactants with a 1,3-propan-2-ol spacer (1, 3-(N- alkyl-2-D-glucosaminyl acetyl) propan-2-ol, Glu(n)-3(OH)-Glu(n), n = 12, 14) were synthesized with D-(+)-glucono-1,5-lactone as starting material in two steps, whose structures were confirmed using proton nuclear magnetic resonance spectroscopy (1H NMR) and carbon nuclear magnetic resonance carbon spectroscopy (13C NMR). The micellization of Glu(n)-3(OH)-Glu(n) (n = 12, 14) in aqueous solution at 25.0°C was investigated by using surface tension measurement. The results show that the critical micelle concentration (CMC) of Glu(12)-3(OH)-Glu(12) is around 10–5 mol × L–1, and is one order of magnitude smaller than that of Glu(14)-3(OH)-Glu(14), indicating that the surface activity of Glu(12)-3(OH)-Glu(12) is superior to that of Glu(14)-3(OH)-Glu(14). Moreover, the aggregation behavior of Glu(12)-3(OH)-Glu(12) in aqueous solution at different pH values was investigated by surface tension, dynamic light scattering (DLS), and cryogenic transmission electron microscopic (Cryo-TEM) measurements. The results indicate that the CMC slightly increases with the decrease of the solution pH. The microstructure of Glu(12)-3(OH)-Glu(12) aggregates transitions from micelle to vesicle with the solution pH from acidic to neutral and alkaline. The microstructural transformation of Glu(12)-3(OH)-Glu(12) with the solution pH is mainly determined by the protonation of the two tertiary amine nitrogen atoms in its hydrophilic headgroups.

Zusammenfassung

Es wurden die folgenden neuartigen Geminitenside auf Zuckerbasis mit einem 1,3-Propan-2-ol-Spacer mit D-(+)-Glucono-1,5-Lacton als Ausgangsmaterial in zwei Schritten synthetisiert: (1,3-(N-alkyl-2-D-glucosaminylacetyl)-propan-2-ol, Glu(n)-3(OH)-Glu(n), n = 12, 14). Ihre Strukturen wurden mittels Protonen-Kernspinresonanzspektroskopie (1H-NMR) und Kohlenstoff-13-Kernspinresonanz-Kohlenstoffspektroskropie (13C-NMR) bestätigt. Die Mizellenbildung von Glu(n)-3(OH)-Glu(n) (n = 12, 14) in wässriger Lösung wurde bei 25 °C mit Hilfe der Oberflächenspannungsmessung untersucht. Die Ergebnisse zeigen, dass die kritische Mizellenkonzentration (CMC) von Glu(12)-3(OH)-Glu(12) etwa 10–5 mol L–1 beträgt und eine Größenordnung kleiner ist als die von Glu(14)-3(OH)-Glu(14), was darauf hinweist, dass die Oberflächenaktivität von Glu(12)-3(OH)-Glu(12) der von Glu(14)-3(OH)-Glu(14) überlegen ist. Darüber hinaus wurde das Aggregationsverhalten von Glu(12)-3(OH)-Glu(12) in wässriger Lösung bei verschiedenen pH-Werten durch Messungen der Oberflächenspannung, der dynamischen Lichtstreuung (DLS) und der kryogenen Transmissionselektronenmikroskopie (Cryo-TEM) bestimmt. Die Ergebnisse zeigen, dass die CMC mit der Abnahme des pH-Wertes der Lösung leicht ansteigt. Die Mikrostruktur der Glu(12)-3(OH)-Glu(12)-Aggregate geht mit dem Lösungs-pH von sauer zu neutral und alkalisch von Mizelle zu Vesikel über. Die mikrostrukturelle Transformation von Glu(12)-3(OH)-Glu(12) mit dem Lösungs-pH wird hauptsächlich durch die Protonierung der beiden tertiären Amin-Stickstoffatome in seinen hydrophilen Kopfgruppen bestimmt.


Dr. Ruijuan Wang School of Material and Chemical Engineering
Dr. Zhigang Yin Henan Engineering Research Center of Catalysis and Seperation of Cyclohexanol Zhengzhou University of Light Industry Zhengzhou, Henan 450002 P.R.China

Acknowledgements

This work was supported by the Foundation of Henan Educational Committee (19B150019), Foundation of Henan Department of Science and Technology (CLY20170165) and the Doctoral Research Fund of Zhengzhou University of Light Industry (2014BSJJ063).

References

1 Menger, F. M. and Littau, C. A.: Gemini-surfactants: synthesis and properties, Journal of the American Chemical Society 113 (1991) 1451–1452. DOI:10.1021/ja00004a077 Search in Google Scholar

2 Wang, R., Wang, D., Yin, Z., Yang, X. and Liu, Q.: Micellization of carboxylic acid gemini surfactant and its interaction with amino acid surfactant in aqueous solution, Journal of Surfactants & Detergents 22 (2019) 411–419. DOI:10.1002/jsde.12239 Search in Google Scholar

3 Wang, R., Yan, H., Hu, W., Li, Y. and Mei, Z.: Micellization of anionic sulfonate gemini surfactants and their interactions with anionic polyacrylamide, Journal of Surfactants and Detergents 21 (2018) 81–90. DOI:10.1002/jsde.12003 Search in Google Scholar

4 Wang, R., Yan, H., Ma, W. and Li, Y.: Complex formation between cationic gemini surfactant and sodium carboxymethylcellulose in the absence and presence of organic salt, Colloids and Surfaces A: Physicochemical and Engineering Aspects 509 (2016) 293–300. DOI:10.1016/j.colsurfa.2016.09.023 Search in Google Scholar

5 Fan, Y. X., Han, Y. C. and Wang, Y. L.: Effects of molecular structures on aggregation behavior of gemini surfactants in aqueous solutions, Acta Physico-Chimica Sinica 32 (2016) 214–226. DOI:10.3866/PKU.WHXB201511022 Search in Google Scholar

6 Pérez, L., Pinazo, A., Pons, R. and Infante, M.: Gemini surfactants from natural amino acids, Advances in Colloid & Interface Science 205 (2014) 134–155. PMid:24238395; DOI:10.1016/j.cis.2013.10.020 Search in Google Scholar

7 Wang, R., WanYan, R., Yang, S., Wang, D. and Yin, Z.: Synthesis and aggregation of novel sugar-based gemini surfactant with a N, N’-acetylethylenediamine spacer in aqueous solution, Journal of Surfactants and Detergents 23 (2020) 697–703. DOI:10.1002/jsde.12424 Search in Google Scholar

8 Singh, N. and Sharma, L.: Synthesis, characteristics and application of novel non-ionic gemini surfactants as reverse micellar systems for encapsulation of some aromatic a-amino acids in n-hexane, Tenside Surfactants Detergents 57 (2020) 247–251. DOI:10.3139/113.110682 Search in Google Scholar

9 Sharma, L., Saroj and Singh, N.: Micellar encapsulation of some polycyclic aromatic hydrocarbons by glucose derived non-?ionic gemini surfactants in aqueous medium. Tenside Surfactants Detergents 51 (2014) 441–444. DOI:10.3139/113.110327 Search in Google Scholar

10 Shi, J., Li, Q. D. and Xia, X. C.: Synthesis and properties of sugar-based gemini surfactants. Tenside Surfactants Detergents 43 (2006) 204–209. DOI:10.3139/113.100309 Search in Google Scholar

11 Castro, M. J. L., Kovensky, J. and Cirelli, A. F.: Gemini surfactants from alkyl glucosides, Tetrahedron Letters 38 (1997) 3995–3998. DOI:10.1016/S0040-4039(97)00817-4 Search in Google Scholar

12 Castro, M. J. L., Kovensky, J. and Cirelli, A. F.: New dimeric surfactants from alkyl glucosides, Tetrahedron 55 (1999) 12711–12722. DOI: 10.1016/S0040-4020(99)00786-3 Search in Google Scholar

13 Mariano, C., José, K. and Alicia, C.: Structure-properties relationship of dimeric surfactants from butyl glucosides, Molecules 5 (2000) 608–609. DOI:10.3390/50300608 Search in Google Scholar

14 Castro, M. J. L., Cirelli, A. F. and Kovensky, J.: Synthesis and interfacial properties of sugar-based surfactants composed of homo-and heterodimers, Journal of Surfactants & Detergents 9 (2006) 279–286. DOI: 10.1007/s11743-006-5008-x Search in Google Scholar

15 Gan, C., Hong, L. and Kunliang, C.: Novel sugar-based gemini surfactants and their surface properties, Journal of Surfactants & Detergents 21 (2018) 859–866. DOI:10.1002/jsde.12187 Search in Google Scholar

16 Gan, C., Cai, K., Qu, X., Li, H., Wei, L. and Cheng, R.: Glucose-based novel gemini surfactants: Surface activities, aggregation properties and a preliminary study as nanocarrier for resveratrol, Journal of Molecular Liquids 283 (2019) 781–787. DOI:10.1016/j.molliq.2019.03.153 Search in Google Scholar

17 Sakai, K., Umezawa, S., Tamura, M., Takamatsu, Y., Tsuchiya, K., Torigoe, K., Ohkubo, T., Yoshimura, T., Esumi, K. and Sakai, H.: Adsorption and micellization behavior of novel gluconamide-type gemini surfactants, Journal of Colloid and Interface Science 318 (2008) 440–448. PMid:18031755; DOI:10.1016/j.jcis.2007.10.039 Search in Google Scholar

18 Tomokazu, Y., Shin, U., Akihiko, F., Kanjiro, T., Kenichi, S., Hideki, S., Masahiko, A. and Kunio, E.: Equilibrium surface tension, dynamic surface tension, and micellization properties of lactobionamide-type sugar-based Gemini surfactants, Journal of Oleo Science 62 (2013) 353–362. PMid:23728326; DOI:10.5650/jos.62.353 Search in Google Scholar

19 Warwel, S., Brüse, F. and Schier, H.: Glucamine-based gemini surfactants I: Gemini surfactants from long-chainN-alkyl glucamines and a,x-diepoxides, Journal of Surfactants & Detergents 7 (2004) 181–186. DOI: 10.1007/s11743-004-0302-1 Search in Google Scholar

20 Warwel, S. and Brüse, F.: Glucamine-based gemini surfactants II: Gemini surfactants from long-chain N-alkyl glucamines and epoxy resins, Journal of Surfactants & Detergents 7 (2004) 187–193. DOI:10.1007/s11743-004-0303-0 Search in Google Scholar

21 Johnsson, M., Wagenaar, A., Stuart, M. C. A. and Engberts, J. B. F. N.: Sugar-based gemini surfactants with pH-dependent aggregation behavior: vesicle-to-micelle transition, critical micelle concentration, and vesicle surface charge reversal, Langmuir 19 (2003) 4609–4618. DOI:10.1021/la0343270 Search in Google Scholar

22 Johnsson, M., Wagenaar, A. and Engberts, J. B. F. N.: Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH, Journal of the American Chemical Society 125 (2003) 757–760. PMid:12526675; DOI:10.1021/ja028195t Search in Google Scholar

23 Johnsson, M. and Engberts, J. B. F. N.: Novel sugar-based gemini surfactants: aggregation properties in aqueous solution, Journal of Physical Organic Chemistry 17 (2004) 934–944. DOI:10.1002/poc.817 Search in Google Scholar

24 Laska, U., Wilk, A., Maliszewska, I. and Syper, L.: Novel glucose-derived gemini surfactants with a 1,1-ethylenebisurea spacer: Preparation, thermotropic behavior, and biological properties, Journal of Surfactants & Detergents 9 (2006) 115–124. DOI:10.1007/s11743-006-0380-0 Search in Google Scholar

25 Wagenaar, A. and Engberts, J. B. F. N.: Synthesis of nonionic reduced-sugar based bola amphiphiles and gemini surfactants with an a, x-diamino-(oxa)alkyl spacer, Tetrahedron 63 (2007) 10622–10629. DOI:10.1016/j.tet.2007.08.023 Search in Google Scholar

26 Menger, F. M. and Mbadugha, B. N. A.: Gemini surfactants with a disaccharide spacer, Journal of the American Chemical Society 123 (2001) 875–885. PMid:11456621; DOI:10.1021/ja0033178 Search in Google Scholar

27 Fielden, M. L., Perrin, C., Kremer, A., Bergsma, M., Stuart, M. C., Camilleri, P. and Engberts, J. B. F. N.: Sugar-based tertiary amino gemini surfactants with a vesicle-to-micelle transition in the endosomal pH range mediate efficient transfection in vitro, European Journal of Biochemistry 268 (2001) 1269–1279. PMid:11231278; DOI:10.1046/j.1432-1327.2001.01995.x Search in Google Scholar

28 Wang, R., Ma, L., Yang, X., Yang, Z. and Mei, Z.: Nonionic glycosyl Gemini surfactant containing hydroxyl linking group and preparation method thereof. (2018) CN108940117A. Zhengzhou: Zhengzhou University of Light Industry. Search in Google Scholar

29 Burczyk, B., Wilk, K. A., Sokołowski, A. and Syper, L.: Synthesis and surface properties of N-alkyl-N-methylgluconamides and N-alkyl-N-methyllactobionamides, Journal of Colloid and Interface Science 240 (2001) 552–558. PMid:11482965; DOI:10.1006/jcis.2001.7704 Search in Google Scholar

Received: 2020-06-12
Accepted: 2021-01-21
Published Online: 2021-09-25
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany