Accessible Unlicensed Requires Authentication Published by De Gruyter November 30, 2021

Removal of Surfactant Cetyldimethylethyl Ammonium Bromide from Water using Adsorption in Combination with a Membrane Pilot Plant

Entfernung von Cetyldimethylethylammoniumbromid aus Wasser durch Adsorption in einer Membranpilotanlage
Muhammad Zahoor, Sultan Alam, Muhammad Ali and Muhammad Sufaid Khan


In this study, a magnetic carbon nanocomposite (MCNC) was prepared using peanut shell biomass as carbon source. The prepared adsorbent was characterised by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric/differential thermal analysis (TGA/DTA) and BET surface analysis. Batch experiments were carried out to determine the adsorption parameters of cetyl dimethylethyl ammonium bromide (CDEAB) on MCNC. Of the isotherm and kinetics models used, the Langmuir model fitted the equilibrium adsorption data best, while the kinetics data were best explained by the second-order kinetic pseudo-equation. The numerical values of enthalpy change (ΔH8 = 38 kJ mol–1) and Gibb free energy (ΔG8 = 70.95 kJ mol–1, 72.19 kJ mol–1 and 73.32 kJ mol–1 corresponding to 20°C, 30°C and 40 °C, respectively) were positive, while the value of entropy change (ΔS8 = –0.11 kJ mol–1 K–1) indicated an endothermic and non-spontaneous process. After determining the optimal adsorption parameters, the adsorbent was used in a hybrid plant with a membrane pilot plant equipped with ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes. In MCNC/membrane operation, an improvement in permeate flux was observed for the three selected membranes. The percentage retention of UF and NF membranes was also improved by MCNC pre-treatments in hybrid mode.


In dieser Studie wurde ein magnetisches Kohlenstoff-Nanokomposit (MCNC) unter Verwendung von Erdnussschalenbiomasse als Kohlenstoffquelle hergestellt. Das hergestellte Adsorptionsmittel wurde mit Rasterelektronenmikroskopie (REM), Fourier-Transform-Infrarot-Spektroskopie (FTIR), Thermogravimetrische/Differenz-Thermoanalyse (TGA/DTA) und BET-Oberflächenanalyse charakterisiert. Es wurden Batch-Experimente durchgeführt, um die Adsorptionsparameter von Cetyldimethylethylammoniumbromid (CDEAB) auf MCNC zu bestimmen. Von den verwendeten Isothermen- und Kinetikmodellen beschrieb das Langmuir-Modell die Gleichgewichtsadsorptions-daten am besten, während die Kinetikdaten am besten durch die kinetische Pseudogleichung zweiter Ordnung erklärt wurden. Die Werte der Enthalpieänderung (ΔH8 = 38 kJ mol–1) und der freien Gibb-Energie (ΔG8 = 70,95 kJ mol–1, 72,19 kJ mol–1 und 73,32 kJ mol–1 entsprechend 20°C, 30°C bzw. 40 °C) waren positiv, während der negative Wert der Entropieänderung (ΔS8 = –0,11 kJ mol–1 K–1) auf einen endothermen und nicht spontanen Prozess hindeutet. Nach der Bestimmung der optimalen Adsorptionsparameter wurde das Adsorptionsmittel in einer Hybridanlage mit einer Membran-Pilotanlage eingesetzt, die mit Ultrafiltrations- (UF), Nanofiltrations- (NF) und Umkehrosmose-Membranen (RO) ausgestattet war. Im MCNC/Membranbetrieb wurde eine Verbesserung des Permeatflusses der drei ausgewählten Membranen festgestellt. Die prozentuale Rückhaltung von UF- und NF-Membranen wurde durch die MCNC-Vorbehandlung im Hybridbetrieb ebenfalls verbessert.

Dr. Muhammad Zahoor Department of Biochemistry University of Malakand Chakdara Dir (L) Pakistan


1 Rijsberman, F. R.: Water scarcity: fact or fiction, Agricultural Water Management. 80 (2006) 5–22. DOI:10.1016/j.agwat.2005.07.001 Search in Google Scholar

2 Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M. and Colón-González, F. J.: Multimodel assessment of water scarcity under climate change, Proceedings of the National Academy of Sciences. 111 (2014) 3245–3250.DOI: ; PMid:24344289; DOI:10.1073/pnas.1222460110 Search in Google Scholar

3 Bakker. F.: Water security: research challenges and opportunities, Science. 337 (2012) 914–915. PMid:22923564; DOI:10.1126/science.1226337 Search in Google Scholar

4 Zahoor, M.: Removal of Synthetic Organic Foulants by Granular Activated Carbon Filters and Ultrafiltration Membrane. Tenside surfactants and detergents. 49 (2012) 382–389. DOI:10.3139/113.110206 Search in Google Scholar

5 Zahoor, M.: Separation of surfactants from water by granular activated carbon/ ultrafiltration hybrid process, Desal.Water Treat. 57 (2016) 1988–1994. DOI:10.1080/19443994.2014.979242 Search in Google Scholar

6 Maria, M. O., Julia, M., Santiago, M. C., Juan, L. S., Aparicio, I. and Esteban, A.: Novel synthetic Clays for the adsorption of surfactants from aqueous media, J. Environ. Manage. 206 (2018) 357–363. PMid:29101877; DOI:10.1016/j.jenvman.2017.10.053 Search in Google Scholar

7 Yakout, S. M. and Nayl, A. A.: Removal of cationic surfactant (CTAB) from aqueous solution On to activated carbon obtained from corncob carbon. Sci. Tech. 2 (2009) 107–116. DOI: ISSN 0974–0546 Search in Google Scholar

8 Ren, H. P., Tian, S. P., Zhu, M., Zhao, Y. Z., Li, K. X., Ma, Q., Ding, S. Y., Gao, J. and Miao, Z.: Modification of montmorillonite by Gemini surfactants with different chain lengths and its Adsorption behavior for methyl orange, Appl. Clay Sci. 151 (2018) 29–36. DOI:/ Search in Google Scholar

9 El-Shafey, E. S. I., Al-Lawati, H. and Al-Sumri, A. S.: Ciprofloxacin adsorption from aqueous Solution onto chemically prepared carbon from date farm leaflet, Water. Res. 24(9) (2012) 1579–1586. DOI:10.1016/S1001-0742(11)60949-2 Search in Google Scholar

10 Li, H., Zhang, D., Han, X. and Xing, B.: Adsorption of antibiotic ciprofloxacin on carbon Nanotubes; pH dependence and thermodynamics, Chemosphere. 95 (2014) 150–155. PMid:24094774; DOI:10.1016/j.chemosphere.2013.08.053 Search in Google Scholar

11 Ali, M., Alam, S., Rehman, U. R., Zahoor, M. and Khan, M. S.: Adsorptive removal of cethyltrimethyl ammonium bromide (CTAB) surfactant from aqueous solution: crossbreed pilot plant membrane studies. Tenside Surfactants Detergents. 56 (2019): 534–542. DOI:10.3139/113.110656 Search in Google Scholar

12 Zahoor, M.: Magnetic adsorbent used in combination with ultrafiltration membrane for the Removal of surfactants from water, Desalin. Water. Treat. 52 (16 – 18) (2014) 3104–3114. DOI:10.1080/19443994.2013.797643 Search in Google Scholar

13 Khattak, M. M. U., Zahoor, M., Muhammad, B., Khan, F. A., Ullah, R. and AbdeI-Salam, M. N.: Removal of Heavy Metals from Drinking Water by Magnetic Carbon Nanostructures Prepared from Biomass, J. Nanomater. 1–10 (2017). DOI:10.1155/2017/5670371 Search in Google Scholar

14 Zahoor, M.: Removal of Pesticides from Water Using Granular Activated Carbon and Ultrafiltration Membrane A Pilot Plant Study, J. of Encapsulation and Adsorption Sci. 3 (2013) 71–76. DOI:10.4236/jeas.2013.33009 Search in Google Scholar

15 Langmuir, I.: The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum," Journal of the American Chemical Society, 40 (1918)1361–1403. DOI:10.1021/ja02242a004 Search in Google Scholar

16 Freundlich, H.: Über die Adsorption in Lösungen (Ad- sorption in Solution)," Zeitschrift für Physikalische Che- mie. 57 (1906) 384–470. DOI:10.1515/zpch-1907-5723 Search in Google Scholar

17 Ullah, A., Zahoor, M. and Alam, S.: Removal of enrofloxacin from water through magnetic nanocomposites prepared from pineapple waste biomass. Surface Engineering and Applied Electrochemistry. 55 (2019.): 536–547. DOI:10.3103/S1068375519050156 Search in Google Scholar

18 Ullah, A., Zahoor, M., Alam, S., Ullah, R., Alqahtani, A. S. and Mahmood, H. M.: Separation of levofloxacin from industry effluents using novel magnetic nano-composite and membranes hybrid processes. BioMed Research International. 2019 (2019) 1–13.; DOI:10.1155/2019/5276841 Search in Google Scholar

19 Ullah, A., Zahoor, M. and Alam, S.: Removal of ciprofloxacin from water through magnetic nanocomposite/membrane hybrid processes. Desalination and water treatment. 137 (2019) 260–272. DOI:10.5004/dwt.2019.23187 Search in Google Scholar


Figure 1S TGA and DTA spectrum of adsorbent prepared from peanut shells

Figure 1S

TGA and DTA spectrum of adsorbent prepared from peanut shells

Figure 2S FTIR spectrum of MCNC prepared from Peanut shells

Figure 2S

FTIR spectrum of MCNC prepared from Peanut shells

Figure 3S Point zero charge of MCNCP using mass titration technique

Figure 3S

Point zero charge of MCNCP using mass titration technique

Figure 4S Van’t Hoff plot of CDEAB onto MCNC

Figure 4S

Van’t Hoff plot of CDEAB onto MCNC

Received: 2020-08-22
Accepted: 2020-12-27
Published Online: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany