Accessible Requires Authentication Published by De Gruyter July 29, 2021

Phase Studies and Efficient Recovery of Inorganic Metal Salts from the Microemulsion System Using a Sugar-Based Non-Ionic Surfactant

Phasenuntersuchungen und effiziente Rückgewinnung von anorganischen Metallsalzen aus dem Mikroemulsionssystem unter Verwendung eines zuckerbasierten nichtionischen Tensids
Shehnaz H. Solanki and Sandeep R. Patil

Abstract

In the present work, the phase behaviour of the microemulsion system formulated by using water, organic solvent, and a sugar-based non-ionic surfactant was investigated in detail. We have used a sugar-based non-ionic surfactant for formulation of microemulsion, as it is a greener alternative for the formulation of a microemulsion system, owing to the following aspects: a) better physicochemical properties as compared to that of the conventional non-ionic surfactants, b) non-toxicity, and c) biodegradability. The extraction of heavy metal ions from the metal complexes as well as the recovery efficiency of heavy metal ions using a microemulsion system has been investigated. The maximum absorbance values of metal ions, after recovery from the metal complexes, were measured. Moreover, the UV-Visible spectrophotometric studies revealed that the absorbance increases with an increase in metal ion concentration in the aqueous phase while its value decreases with an increase in the concentration of potassium thiocyanate in the aqueous phase after the extraction of the metal ions from the metal complexes. Furthermore, it has also been evaluated that 4.0 mol/L potassium thiocyanate is the optimum concentration required for efficient recovery of 0.05 mol/L cobalt ion as well as nickel ions. The recovery efficiency of cobalt ions was found to be 97%, whereas that of nickel ions was determined to be 94% respectively. In addition to being an environmentally friendly approach, the present work is an economically viable option too, as it deals with the studies related to the extraction and efficient recovery of metal ions.

Zusammenfassung

In der vorliegenden Arbeit wurde das Phasenverhalten des Mikroemulsionssystems, das unter Verwendung von Wasser, organischem Lösungsmittel und einem nichtionischen Tensid auf Zuckerbasis formuliert wurde, eingehend untersucht. Wir haben ein nicht-ionisches Tensid auf Zuckerbasis für die Formulierung der Mikroemulsion verwendet, da es eine umweltfreundlichere Alternative für die Formulierung eines Mikroemulsionssystems ist, und zwar aufgrund der folgenden Aspekte: a) bessere physikochemische Eigenschaften im Vergleich zu den herkömmlichen nichtionischen Tensiden, b) Nicht-Toxizität und c) biologische Abbaubarkeit. Die Extraktion von Schwermetall-Ionen aus den Metallkomplexen sowie die Rückgewinnungseffizienz von Schwermetallionen unter Verwendung eines Mikroemulsionssystems wurden untersucht. Es wurden die maximalen Absorptionswerte der Metallionen nach der Rückgewinnung aus den Metallkomplexen gemessen. Darüber hinaus ergaben die spektrophotometrischen Untersuchungen im UV-Bereich, dass die Absorption mit zunehmender Metallionenkonzentration in der wässrigen Phase zunimmt, während ihr Wert mit zunehmender Konzentration von Kaliumthiocyanat in der wässrigen Phase nach der Extraktion der Metallionen aus den Metallkomplexen abnimmt. Weiterhin wurde ermittelt, dass 4,0 mol/L Kaliumthiocyanat die optimale Konzentration ist, die für eine effiziente Rückgewinnung von 0,05 mol/L Kobalt- sowie Nickel-Ionen erforderlich ist. Es wurde festgestellt, dass die Rückgewinnungseffizienz von Kobalt-Ionen 97% beträgt, während die von Nickel-Ionen mit 94% ermittelt wurde. Die vorliegende Arbeit ist nicht nur ein umweltfreundlicher Ansatz, sondern auch eine wirtschaftlich sinnvolle Option, da sie sich mit den Untersuchungen zur Extraktion und effizienten Rückgewinnung von Metall-Ionen befasst.


Professor Dr. Sandeep R. Patil School of Engineering and Technology Navrachana University Vadodara-391410 India E-mail: sandeepp@nuv.ac.in

Acknowledgements

We are grateful to S.E.R.B-D.S.T. New Delhi, Government of India (Reference No. SBIFT/CS-083/2013) for financial support. We are also grateful to Dr. Matthias Hloucha, BASF, Düsseldorf, Germany for providing the sugar-based industrial-grade non-ionic surfactants. We are thankful to Prof. Nilay Yajnik, Provost, and Management of Navrachana University Vadodara for infrastructure facilities.

References

1 Zaib, H., Din, M. I., Sana, N. and Manzar, I.: Recovery of cobalt and copper from textile, electroplating and tannery effluents using electrocoagulation method, Hydrol. Curr. Res. 4 (2013). DOI:10.4172/2157-7587.1000147 Search in Google Scholar

2 Dantas, T. N. C., Neto, A. A. D., Moura, M., Neto, E. L. B., Forte, K. R. and Leite, R. H. L.: Heavy metals extraction by microemulsions, Water Res. 37 (2003) 2709–2717. DOI:10.1016/S0043-1354(03)00072-1 Search in Google Scholar

3 Tao, Z., Yan-Zhao, Y., Zhan-Yu, L., Chuan-Bo, X. and Xue-Mei, X.: Extraction of cobalt by CTMAB-pentanol-heptane-HCl Winsor II microemulsion systems., J. Radioanal. Nucl. Chem. 267 (2006). DOI:10.1007/s10967-006-0062-4 Search in Google Scholar

4 Shen, L. C., Lo, A., Nguyen, X. T. and Hankins, N. P.: Recovery of heavy metal ions and recycle of removal agent in the polymer–surfactant aggregate process, Sep. Purif. Technol. 159 (2016) 169–176. DOI:10.1016/j.seppur.2015.12.025 Search in Google Scholar

5 de Castro Dantas, T. N., Beltrame, L. T. C., Neto, A. A. D. and de Alencar Moura, M. C. P.: Use of microemulsions for removal of color and dyes from textile wastewater, J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 79 (2004) 645–650. DOI:10.1002/jctb.1034 Search in Google Scholar

6 Mihaly, M., Meghea, I. and Meghea, A.: Removal of dyes from textile waste-waters by using environmentally friendly systems, Int. Multidiscip. Sci. Geo-Conference SGEM Surv. Geol. Min. Ecol. Manag . 2 (2010). Search in Google Scholar

7 Al-Ghouti, M. A., Hawari, A. and Khraisheh, M.: A solid-phase extractant based on microemulsion modified date pits for toxic pollutants, J. Environ. Manage. 130 (2013) 80–89. PMid:24071716; DOI:10.1016/j.jenvman.2013.08.045 Search in Google Scholar

8 Radi, S., Toubi, Y., El-Massaoudi, M., Bacquet, M., Degoutin, S. and Mabkhot, Y. N.: Efficient extraction of heavy metals from aqueous solution by novel hybrid material based on silica particles bearing new Schiff base receptor, J. Mol. Liq. 223 (2016) 112–118. DOI:10.1016/j.molliq.2016.08.024 Search in Google Scholar

9 Uddin, M. K.: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J. 308 (2017) 438–462. DOI:10.1016/j.cej.2016.09.029 Search in Google Scholar

10 Lu, Y. and Xu, Z.: Precious metals recovery from waste printed circuit boards: a review for current status and perspective, Resour. Conserv. Recycle. 113 (2016) 28–39. DOI:10.1016/j.resconrec.2016.05.007 Search in Google Scholar

11 Ding, Z., Wang, Q. and Hu, X.: Extraction of heavy metals from water-stable soil aggregates using EDTA, Procedia Environ. Sci. 18 (2013) 679–685. DOI:10.1016/j.proenv.2013.04.092 Search in Google Scholar

12 Mukherjee, X., Bhunia, P. and De, S.: Impact of graphene oxide on the removal of heavy metals using mixed matrix membrane, Chem. Eng. J. 292 (2016) 284–297. DOI:10.1016/j.cej.2016.02.015 Search in Google Scholar

13 Beltrame, L. T. C., de Castro Dantas, T. N., Dantas Neto, A. A., de Barros Neto, E. L. and Silva Lima, F. F.: Influence of cosurfactant in microemulsion systems for color removal from textile wastewater, J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 80 (2005) 92–98. DOI:10.1002/jctb.1162 Search in Google Scholar

14 Steytler, D. C., Towey, T. F., Robinson, B. H. and Atay, N. Z.: Mechanisms of solute interfacial transfer in Winsor-II systems, Langmuir. 17 (2001) 417–426. DOI:10.1021/la0009902 Search in Google Scholar

15 Gao, S., Shen, X., Chen, Q. and Gao, H.: Solvent extraction of thorium (IV) using W/O microemulsion, Sci. China Chem. 55 (2012) 1712–1718. DOI:10.1007/s11426-012-4686-7 Search in Google Scholar

16 Mihaly, M., Comanescu, A. F., Rogozea, A. E. and Meghea, A.: Nonionic Microemulsion Extraction of Ni (II) from Wastewater, J. Mol Crystals, and Liq. Crystals. 1 (2010). DOI:10.1080/15421401003719837 Search in Google Scholar

17 Dantas, T. N. D. C., Neto, A. A. D. and Moura, M. C. P. D. A.: Removal of chromium from aqueous solutions by diatomite treated with microemulsion, Water Res. 35 (2001) 2219–2224. DOI:10.1016/S0043-1354(00)00507-8 Search in Google Scholar

18 Melo, K. R. O., Castro Dantas, T. N., Moura, M., Dantas Neto, A. A., Oliveira, M. R. and Barros Neto, E. L.: Chromium extraction by microemulsions in two-and three-phase systems, Brazilian J. Chem. Eng. 32 (2015) 949–956. DOI:10.1590/0104-6632.20150324s00002985 Search in Google Scholar

19 Li, E., Zeng, X. and Fan, Y.: Removal of chromium iron (III) from aqueous solution by manganese oxide and microemulsion modified diatomite, Desalination. 238 (2009) 158–165. DOI:10.1016/J.DESAL.2007.11.062 Search in Google Scholar

20 Salma, A. A., Tasbim, G. K., Hassan, I. A., Mariam, S. A., Abdul, H. P., Naee-mullah, K., Jameel, A. B. and Faheem, S.: A new dispersive liquid-liquid micro-extraction using ionic liquid-based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples, J. Environ. Manage. 130 (2016) 80–89. DOI:10.1016/j.ecoenv.2015.12.035 Search in Google Scholar

21 Lu, W., Lu, Y., Liu, F., Shang, K., Wang, W. and Yang, Y.: Extraction of gold (III) from hydrochloric acid solutions by CTAB/n-heptane/iso-amyl alcohol/Na2SO3 microemulsion, J. Hazard. Mater. 186 (2011) 2166–2170. PMid:21236565; DOI:10.1016/j.jhazmat.2010.12.059 Search in Google Scholar

22 Shan, Z., Yan-Zhao, Y., Tao, Z., Jian, H. and Chang-Hong, L.: Uranium (VI) extraction by Winsor II microemulsion systems using trialkyl phosphine oxide, J. Radioanal. Nucl. Chem. 265 (2005) 419–421. DOI:10.1007/s10967-011-1568-y Search in Google Scholar

23 Wang, W., Yang, Y. Z., Zhao, H., Guo, Q. W., Lu, W. J. and Lu, Y. M.: Extraction of europium by sodium oleate/pentanol/heptane/NaCl microemulsion system, J. Radioanal. Nucl. Chem. 292 (2012) 1093–1098. DOI:10.1007/s10967-011-1568-y Search in Google Scholar

24 Xia, C. B., Yang, Y. Z., Xin, X. M and Wang, S. X.: Extraction of rare earth metal samarium by microemulsion, J. Radioanal. Nucl. Chem 275 (2008) 535–540. DOI:10.1007/s10967-007-6960-2 Search in Google Scholar

25 Kara, D., Fisher, A. and Hill, S.: Extraction of trace elements by ultrasound-assisted emulsification from edible oils producing detergent microemulsions, Food Chem. 188 (2015) 143–148. PMid:26041176; DOI:10.1016/j.foodchem.2015.04.057 Search in Google Scholar

26 Atkin, R. and Warr, G. G.: Phase behavior and microstructure of microemulsions with a room-temperature ionic liquid as the polar phase, J. Phys. Chem. B. 111 (2007) 9309–9316. DOI:/10.1021/jp065020n. PMid:17636975; DOI:10.1021/jp065020n Search in Google Scholar

27 Mihaly, M., Comanescu, A. F., Rogozea, A. E., Vasile, E. and Meghea, A.: NiO– silica-based nanostructured materials obtained by microemulsion assisted solgel procedure, Mater. Res. Bull. 46 (2011) 1746–1753. DOI:10.1016/j.materresbull.2011.05.031 Search in Google Scholar

28 Fleancu, M. C., Olteanu, N. L., Rogozea, A. E., Crisciu, A. V., Pincovschi, I. and Mihaly, M.: Physical-chemical parameters promoting phase changes in nonionic environmental-friendly microemulsions, Fluid Phase Equilib. 337 (2013) 18–25. DOI:10.1016/j.fluid.2012.09.014 Search in Google Scholar

29 Petcu, A. R., Lazar, C. A., Rogozea, E. A., Olteanu, N. L., Meghea, A. and Mihaly, M.: Nonionic microemulsion systems applied for removal of ionic dyes mixtures from textile industry wastewaters, Sep. Purif. Technol. 158 (2016) 155–159. DOI:10.1016/j.seppur.2015.12.002 Search in Google Scholar

30 Cadar, D., Olteanu, N. L., Petcu, A. R., Meghea, A. and Mihaly, M.: Efficient Recovery of Metals from Aqueous Media by Two-Phase Microemulsion System, U.P.B. Sci. Bull., Series B, 79 (2017) 13–24. Search in Google Scholar

Received: 2020-09-19
Accepted: 2020-12-27
Published Online: 2021-07-29
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston