Accessible Requires Authentication Published by De Gruyter September 25, 2021

Research of a Surfactant Gel with Potential Application in Oilfield

Erforschung eines Tensidgels mit potentieller Anwendung auf dem Ölfeld
Minlan Gao, Wen Tian, Zhihui Ma, Sanbao Dong, Congyu Ke, Jie Zhang and Gang Chen

Abstract

In this study, a viscoelastic surfactant gel was composed using erucoylamine propyl betaine and other additives. The formulation of this viscoelastic surfactant gel solution was determined as: erucamide propyl betaine:oleic acid amide propyl betaine:octadecyl hydroxyl sulfonate betaine = 1.7%:1.36%:0.01%. Then the performance of viscoelastic surfactant gel fluid was evaluated. The results showed that the viscoelastic surfactant gel has good temperature resistance and salt resistance. At 50°C, the apparent viscosity reaches the maximum value, 37 mPa · s, and it displays high shear resistance under the shear rate of 170 s–1, with the viscosity retention of 83.3%. Kerosene (1%) can completely break the gel within 2 h, which can convert the gel into a surfactant solution soon. Also the gel shows high emulsion ability, which can benefit the oil displacement in oilfield. Finally this gel can enhance the oil displacement rate as high as 28%.

Zusammenfassung

In dieser Studie wurde ein viskoelastisches Tensid-Gel unter Verwendung von Erucoylaminpropylbetain und anderen Additiven zusammengestellt. Die Formulierung dieser viskoelastischen Tensid-Gel-Lösung wurde wie folgt bestimmt: Erucoylaminpropylbetain: Ölsäureamidpropylbetain:Octadecylhydroxylsulfonatbetain = 1,7%:1.36%:0.01%. Dann wurde die Leistung der viskoelastischen Tensid-Gelflüssigkeit bewertet. Die Ergebnisse zeigten, dass das viskoelastische Tensid-Gel eine gute Temperaturbeständigkeit und Salzbeständigkeit aufweist. Bei 50°C erreicht die scheinbare Viskosität den maximalen Wert von 37 mPa s, und es zeigt eine hohe Scherfestigkeit bei der Scherrate von 170 s–1. Der Viskositätserhalt beträgt 83,3%. Kerosin (1%) kann das Gel innerhalb von 2 h vollständig brechen, wodurch das Gel in eine Tensidlösung umgewandelt werden kann. Außerdem zeigt das Gel eine hohe Emulsionsfähigkeit, was die Ölverdrängung auf dem Ölfeld begünstigt. Die Ölverdrängungsrate wird mit Hilfe des Gels um bis zu 28% erhöht.


Prof. Gang Chen Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields College of Chemistry and Chemical Engineering Xi’an Shiyou University Xi’an, 710065 China State Key Laboratory of Petroleum Pollution Control CNPC Research Institute of Safety and Environmental Technology Beijing, 102206 China

Acknowledgements

The work was supported financially by Xi’an Science and Technology Planning Project (201805038YD16CG22(3)), National Science Foundation of China (50874092) and The Youth Innovation Team of Shaanxi Universities. And we thank the work of Modern Analysis and Testing Center of Xi`an Shiyou University.

References

1 Wang, B., Wu, T. and Li, Y.: The effects of oil displacement agents on the stability of water produced from ASP (alkaline/surfactant/polymer) flooding, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 379 (2011) 121–126. DOI:10.1016/j.colsurfa.2010.11.064 Search in Google Scholar

2 Dang, Z. M., Yuan, J. K. and Zha, J. W.: Fundamentals, processes and applications of high-permittivity polymer matrix composites, Progress in Materials Science. 57 (2012) 660–723. DOI:10.1016/j.pmatsci.2011.08.001 Search in Google Scholar

3 Dang, Z. M., Zheng, M. S. and Zha, J. W.: 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications, Small. 12 (2016) 1688–1701. PMid:26865507; DOI:10.1002/smll.201503193 Search in Google Scholar

4 Yue, P., Zhang, F. and Fan, H. L.: Study of oil displacement performance of hydroxyl sulfobetaine surfactant, Advanced Materials Research. 853 (2013) 223–228. DOI:10.4028/www.scientific.net/AMR.853.223 Search in Google Scholar

5 Wang, Z., Lin, M. and Jin, S.: Combined flooding systems with polymer microspheres and nonionic surfactant for enhanced water sweep and oil displacement efficiency in heterogeneous reservoirs, Journal of Dispersion Science & Technology. 41 (2014) 267–276. DOI:10.1080/01932691.2019.1570850 Search in Google Scholar

6 Gu, X. F., Gao, L., Li, Y. F., Dong, K., Zhang, J., Du, W. C., Qu, C. T. and Chen, G.: Performance and mechanism of span surfactants as clean flow improvers for crude oil, Petroleum Chemistry. 60 (2020) 140–145. DOI:10.1134/S0965544120010156 Search in Google Scholar

7 Li, J., Niu, L. and Wu, W.: The reservoir adaptability and oil displacement mechanism of polymer microspheres, Polymers. 12 (2020) 885. PMid:32290460; DOI:10.3390/polym12040885 Search in Google Scholar

8 Shi, L., Zhu, S. and Guo, Z.: Experimental study on the effect of polymer injection timing on oil displacement in porous media, Processes. 8 (2020) 93. DOI:10.3390/pr8010093 Search in Google Scholar

9 Chen, G., Yan, J., Liu, Q. N., Zhang, J., Li, J. L., Qu, C. T. and Zhang, Y. M.: Preparation and surface activity study of amino acid surfactants, Comptes Rendus Chimie. 2019 (2019) 277–282. DOI:10.1016/j.crci.2018.11.009 Search in Google Scholar

10 Gao, M. L., Zhang, J., Liu, Q. N., Li, J. L., Zhang, R. J. and Chen, G.: Effect of the alkyl chain of quaternary ammonium cationic surfactants on corrosion inhibition in hydrochloric acid solution, Comptes Rendus Chimie. 22 (2019) 355–362. DOI:10.1016/j.crci.2019.03.006 Search in Google Scholar

11 Chen, G., Cheng, C., Zhang, J., Sun, Y. and Dong, S. B.: Synergistic effect of surfactant and alkali on the treatment of oil sludge, Journal of Petroleum Science and Engineering. 183 (2019) 106420. DOI:10.1016/j.petrol.2019.106420 Search in Google Scholar

12 Yan, J., Liu, Q. N., Du, W. C., Qu, C. T., Song, Z. F., Li, J. L., Zhang, J. and Chen, G.: Synthesis and properties of octadecyl trimethyl ammonium polyacrylic surfactants, Tenside Surfactants Detergents. 57 (2020) 122–128. DOI:10.3139/113.110674 Search in Google Scholar

13 Zhang, J., Bai, Y., Du, W. C., Wu, Ya., Gu, X. F., Li, H., Ma, Y., Qu, C. T. and Chen, G.: The effect of anion on cationic surfactants and a structure-efficiency relationship study, Desalination and Water Treatment. 140 (2019) 207–211. DOI:10.5004/dwt.2019.23371 Search in Google Scholar

14 Chen, G., Bai, Y., Liu, Q. N., Zhang, J., Gu, X. F., Li, H., Qu, C. T. and Zhang, Y. M.: Synthesis and interface activity of a series of dicarboxylic cationic surfactants and structure-efficiency relationship study, Journal of Surfactants and Detergents. 22 (2019) 691–698. DOI:10.1002/jsde.12264 Search in Google Scholar

15 Sheng, Y. J., Wu, X. J., Lu, S. X. and Li, C. H.: Experimental study on foam properties of mixed systems of silicone and hydrocarbon surfactants, Journal of Surfactants and Detergents. 19 (2016) 823–831. DOI:10.1007/s11743-016-1822-y Search in Google Scholar

16 Cristian, F., Enrique, M. and Daniel, R. P.: Successful application of a high temperature viscoelastic surfactant (VES) fracturing fluids under extreme condition in patagonian wells, San Jorge Basin, SPE 107277. 2007. DOI:10.2523/107277-MS Search in Google Scholar

17 Liu, Q. N., Gao, M. L., Zhao, Y., Li, J. L., Qu, C. T., Zhang, J. and Chen, G.: Synthesis and interface activity of a new quaternary ammonium surfactant as an oil/gas field chemical, Tenside Surfactants Detergents. 57 (2020) 90–96. DOI:10.3139/113.110665 Search in Google Scholar

18 Yan, Z., Dai, C. and Zhao, M.: Development, formation mechanism and performance evaluation of a reusable viscoelastic surfactant fracturing fluid, Journal of Industrial & Engineering Chemistry. 37 (2016) 115–122. DOI:10.1016/j.jiec.2016.03.012 Search in Google Scholar

19 Jian, Z. and Shu, X. W.: Performance evaluation of oil displacing agents for primary-minor layers of the Daqing Oilfield, Petroleum Science. 8 (2011) 79–86. DOI:10.1007/s12182-011-0118-0 Search in Google Scholar

20 Bergström, M. L. and Garamus, V. M.: Geometrical shape of micelles formed by cationic dimeric surfactants determined with small-angle neutron scattering, Langmuir. 28 (2012) 9311–9321. PMid:22624499; DOI:10.1021/la301190d Search in Google Scholar

21 Chen, G., Zhou, Z. C., Shi, X. D., Zhang, X. L., Dong, S. B. and Zhang, J.: Synthesis of alkylbenzene sulfonate and its behavior as flow improver in crude oil, Fuel. 288 (2021) 119644. DOI:10.1016/j.fuel.2020.119644 Search in Google Scholar

22 Cohen, L., Soto, F. and Sanchez, E.: Effect of calcium ions concentration on the foaming power of anionic surfactants, Tenside Surfactants Detergents. 46 (2009) 352–356. DOI:10.3139/113.110041 Search in Google Scholar

23 Ma, X., Zhu, Z. and Dai, L.: Introducing hydroxyl into cationic surfactants as viscoelastic surfactant fracturing fluid with high temperature resistance, Russian Journal of Applied Chemistry. 89 (2016) 2016–2026. DOI:10.1134/S1070427216120132 Search in Google Scholar

24 Shiokawa, M., Kanamaru, Y., Yabe, T. and Aoki, T.: Increase in the viscosity of concentrated artificial casein micelle solution during storage at low temperature, Milk Science. 61 (2012) 199–204. DOI:10.11465/milk.61.199 Search in Google Scholar

25 Chen, G., Yan, J., Bai, Y., Liu, D. W., Zhang, J., Li, J. L. and Qu, C. T.: Synthesis of two chiral surfactants by a simple method and the surface activity evaluation, Journal of Molecular Liquids. 316 (2020) 113892. DOI:10.1016/j.molliq.2020.113892 Search in Google Scholar

26 Hua, Z., Lin, M. and Dong, Z.: Study of deep profile control and oil displacement technologies with nanoscale polymer microspheres, Journal of Colloid & Interface Science. 424 (2014) 67–74. PMid:24767500; DOI:10.1016/j.jcis.2014.03.019 Search in Google Scholar

27 Kianineja, A., Rashtchian, D. and Ghazanfari, M. M.: A pore-leveal investigation of surfactant crude oil displacements behavior in fractured porous media using one-quarter five spot micromodels, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 36 (2014) 727–737. DOI:10.1080/15567036.2010.540632 Search in Google Scholar

28 Sun, Y. and Li, Z.: Influence of the interfacial properties on the stability of water in heavy oil emulsions in thermal recovery process, Geofluids. 2 (2020) 1–11. DOI:10.1155/2020/8897576 Search in Google Scholar

29 Cao, G. Q., Zhou, J., Lu, Y. B. and Zhang, H.: Study on the oil displacementefficiency of the new surfactant, Applied Chemical Industry. 42 (2013) 2045–2047. DOI:10.16581/j.cnki.issn1671-3206.2013.11.042 Search in Google Scholar

Received: 2020-10-05
Accepted: 2021-04-01
Published Online: 2021-09-25
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany