Accessible Requires Authentication Published by De Gruyter July 29, 2021

Reaction of Fatty Acid Methyl Ester with Monoethanolamine and Diethanolamine

Reaktion von Fettsäuremethylester mit Monoethanolamin und Diethanolamin
Markéta Berčíková, Jiří Lád, Iveta Hrádková, Monika Kumherová and Jan Šmidrkal


The course of the reaction between lauric acid and monoethanolamine as well as the reaction of methyl laurate with monoethanolamine and diethanolamine were investigated. Thin layer chromatography with flame ionisation detector was used for reaction mixture analysis. The fatty acid methyl ester is more suitable for production of monoethanolamide and diethanolamide. Sodium methoxide or potassium hydroxide (0.02 mol % ester) was used as suitable alkaline catalysts of reaction. The optimal temperature of methyl laurate or coconut oil with diethanolamine reaction is 80°C. Higher temperatures (over 100°C) lead to a higher concentration of amide ester in the product.


Untersucht wurden der Verlauf der Reaktion zwischen Laurinsäure und Monoethanolamin sowie die Reaktion von Methyllaurat mit Monoethanolamin und Diethanolamin. Zur Analyse des Reaktionsgemisches wurde die Dünnschichtchromatographie mit Flammen-Ionisations-Detektor eingesetzt. Zur Herstellung von Monoethanolamid und Diethanolamid ist der Fettsäuremethylester besser geeignet. Als geeignete alkalische Reaktionskatalysatoren wurden Natriummethoxid oder Kaliumhydroxid (0,02 Mol-% Ester) verwendet. Die optimale Temperatur für die Reaktion von Methyllaurat oder Kokosnussöl mit Diethanolamin liegt bei 80°C. Höhere Temperaturen (über 100°C) führen zu einer höheren Konzentration von Amidester im Produkt.

Ms Assistant Prof. Dr. Markéta Berčíková Ms Assistant Prof. Dr. Iveta Hrádková Department of Dairy Fat and Cosmetics University of Chemistry and Technology Prague Technická 5 166 28 Prague 6 Czech Republic Telephone: (+420) 220443822 Fax: (+420) 220443285;


This work was supported by specific university research (MSMT No. 20-SVV/2020).







High Pressure Liquid Chromatography;


lauric acid;




methyl ester of lauric acid;




Thin Layer Chromatography/Flame Ionisation Detector.


1 Kritchevsky, W.: Hydrotropic Fatty Material and Method of Making Same, (1937) U. S. Patent 2,089,212. Search in Google Scholar

2 Meade, E. M.: Process for the Amidation of Esters, (1949) U. S. Patent 2,464,094. Search in Google Scholar

3 Monick, J. A.: Continuous High Temperature Preparation of Alkylolamides, J Am. Oil. Chem Soc. 39 (1962) 213–215. DOI:10.1007/BF02635822 Search in Google Scholar

4 Betts, R. L., Hammet, L.: A Kinetic Study of the Ammonolysis of Phenylacetic Esters in Methanol Solution, J. Am. Chem. Soc. 59 (1937) 1568–1572. DOI:10.1021/ja01287a043 Search in Google Scholar

5 Wetzel, F. H., Miller, J .G. and Day, A. R.: Effect of Structure on Reactivity. VII. The Energies of Activation and the Entropies of Activation for the Ammonolysis of Esters, J. Am. Chem. Soc. 75 (1953) 1150–1153. DOI:10.1021/ja01101a042 Search in Google Scholar

6 Trowbridge, J. R., Falk, R. A. and Krems, I. J.: Fatty Acid Derivatives of Diethanolamine, J. Org. Chem. 20 (1955) 990–995. DOI:10.1021/jo01365a005 Search in Google Scholar

7 Morales-Sanfrutos, J., Megia-Fernandez, A., Hernandez-Mateo, F., Giron-Gonzalez M. D., Salto-Gonzalez, R. and Santoyo-Gonzalez, F.: Alkyl sulfonyl derivatized PAMAM-G2 dendrimers as nonviral gene delivery vectors with improved transfection efficiencies, Org. Biomol. Chem. 9 (2011) 851–864. PMid:21120228; DOI:10.1039/c0ob00355 g Search in Google Scholar

8 Han, D., Wang, B., Jin, H., Wang, H. and Chen, M.: Design, synthesis and CoMFA studies of OEA derivatives as FAAH inhibitors, Med. Chem. Res 26 (2017) 2951–2966; DOI:10.1007/s00044-017-1995-6 Search in Google Scholar

9 Sanders, H. L.: Fatty Acid Alkylolamides, J Am. Oil. Chem Soc. 35 (1958) 548–551. DOI:10.1007/BF02637959 Search in Google Scholar

10 Desnuelle, P., Naudet, M. and Sambuc, E.: Sur la transposition des a-oxyéthylamides gras en les a-amino-esters correspondats, Bull. Soc. Chim. Fr. 152 (1949), 650–654. Search in Google Scholar

11 van Tamelen, E. E.: The Mechanism of Nitrogen-Oxygen Acyl Migrations, J. Am. Chem. Soc. 73 (1951) 5773–5774. DOI:10.1021/ja01156a083 Search in Google Scholar

12 Lee, C. S., Ooi, T. L., Chuah, C. H. and Ahmad, S.: Synthesis of Palm Oil-Based Diethanolamides, J Am. Oil. Chem Soc. 84 (2007), 945–952. DOI:10.1007/s11746-007-1123-8 Search in Google Scholar

Received: 2020-11-09
Accepted: 2021-02-18
Published Online: 2021-07-29
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston