Accessible Requires Authentication Published by De Gruyter July 29, 2021

Heavy Oil Storage Tanks Clean-up Using Biosurfactants and Investigation of the Synergistic Effect with Silica Nanoparticles

Reinigung von Schweröl-Lagertanks mit Biotensiden und Untersuchung des synergistischen Effekts mit Siliciumdioxid-Nanopartikeln
Reyhaneh Azodi Abadshapouri, Hossein Amani, Reza Hajimohammadi and Hadi Soltani

Abstract

In this study, the synergistic effect of silica nanoparticle and biosurfactants on oil storage tank clean up was investigated. Rhamnolipid, saponin and silica nanoparticles were used to recover oil from refinery oily sludge in laboratory experiments. From our results, the optimum HLB value for the extraction process was about 10.5 for the mixture of 62.5% of rhamnolipid and 37.5% of saponin. Our results also showed that the simultaneous use of the biosurfactants and nanoparticles results in a synergistic effect that significantly enhances the process efficiency. Maximum yield of oil residual was obtained about 4% at the optimum condition (HLB value of 10.5 for mixture of the biosurfactants and 3 g/l of silica nanoparticles). The results of present study showed that this method has the potential for industrial applications and may be used in oil recovery from oily sludge.

Zusammenfassung

In dieser Studie wurde der synergistische Effekt von Siliciumdioxid (Silica)-Nanopartikeln und Biotensiden bei der Reinigung von Öllagertanks untersucht. Rhamnolipid, Saponin und Silica-Nanopartikel wurden in Laborexperimenten zur Rückgewinnung von Öl aus öligem Raffinerieschlamm eingesetzt. Aus unseren Ergebnissen ging hervor, dass der optimale HLB-Wert für den Extraktionsprozess bei etwa 10,5 für die Mischung aus 62,5% Rhamnolipid und 37,5% Saponin lag. Unsere Ergebnisse zeigten ebenfalls, dass die gleichzeitige Verwendung der Biotenside und Nanopartikel zu einem synergistischen Effekt führt, der die Effizienz des Prozesses deutlich erhöht. Die maximale Ausbeute an Ölrückständen wurde unter der optimalen Bedingung (HLB-Wert von 10,5 für die Mischung aus den Biotensiden und 3 g/l Silica-Nanopartikel) mit etwa 4% erreicht. Die Ergebnisse der vorliegenden Studie zeigen, dass diese Methode das Potenzial für industrielle Anwendungen hat und für die Ölrückgewinnung aus ölhaltigem Schlamm eingesetzt werden kann.


Professor Reza Hajimohammadi Department of Chemical Engineering Ahar Branch Islamic Azad University Ahar Iran Tel: +984144228211, +989144066327

References

1 Aziz, N. I. H. A. and Hanafiah, M. M.: The potential of palm oil mill effluent (POME) as a renewable energy source. J. Green Energy. 1 (2017) 323–346. DOI:10.1007/978-981-13-2236-5_4 Search in Google Scholar

2 De Almeida, D. G., Soares Da Silva, R. D. C. F., Luna, J. M., Rufino, R. D., Santos, V. A., Banat, I. M. and Sarubbo, L. A.: Biosurfactants: promising molecules for petroleum biotechnology advances. Frontiers in microb. 7 (2016) 1718. DOI:10.3389/fmicb.2016.01718 Search in Google Scholar

3 da Silva, L. J., Alves, F. C. and de França, F. P.: A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manag. Research, 30 (2012), 1016–1030. PMid:22751947; DOI:10.1177/0734242X12448517 Search in Google Scholar

4 Pazoki, M. and Hasanidarabadi, B.: Management of toxic and hazardous contents of oil sludge in Siri Island. Global. J. Envir. Science and Management, 3 (2017) 3–42. DOI:10.22034/gjesm.2017.03.01.004 Search in Google Scholar

5 Narayani, B., Ravichandran, S. and Rajagopal, P.: Design and Simulation of a Tank Floor Cleaning Mechanism for Mobile Robots used in Storage Tanks. In Proceedings. Adv. Robotics 1 (2019) 1–6. DOI:10.1145/3352593.3352656 Search in Google Scholar

6 Wylde, J. J. and Slayer, J.: Development, Testing, and Field Application of a Heavy Oil Pipeline Cleaning Chemical: A Cradle to Grave Case History. In SPE Western Regional Meeting. Soci. Petrol. Eng .1 (2009). 12–15. DOI:10.2118/119688-MS Search in Google Scholar

7 Chrysalidis, A. and Kyzas, G. Z.: Applied Cleaning Methods of Oil Residues from Industrial Tanks. Processes 8 (2020) 569. DOI:10.3390/pr8050569 Search in Google Scholar

8 Coto, B., Martos, C., Peña, J. L., Espada, J. J. and Robustillo, M. D.: A new method for the determination of wax precipitation from non-diluted crude oils by fractional precipitation. Fuel, 87 (2008) 2090–2094. DOI:10.1016/j.fuel.2007.12.012 Search in Google Scholar

9 Wang, L., Tian, Y., Yu, X., Wang, C., Yao, B., Wang, S., Winterfeld, P. H., Wang, X., Yang, Z., Wang, Y. and Cui, J.: Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs. Fuel, 210 (2017) 425–445. DOI:10.1016/j.fuel.2017.08.095 Search in Google Scholar

10 Banat, I. M., Samarah, N., Murad, M., Horne, R. and Banerjee, S.: Biosurfactant production and use in oil tank clean-up. World. J. Microb. Biotech. 7 (1991) 80–88. PMid:24424870; DOI:10.1007/BF02310921 Search in Google Scholar

11 Hajimohammadi, R. and Johari-Ahar, S.: Synergistic Effect of Saponin and Rhamnolipid Biosurfactants Systems on Foam Behavior. Tenside Surf. Deter, 55 (2018) 121–126. DOI:10.3139/113.110546 Search in Google Scholar

12 Atta, A. M. and Elsaeed, A. M.: Use of rosin-based nonionic surfactants as petroleum crude oil sludge dispersants. J. Applied Polymer Sci, 122 (2011) 183–192. DOI:10.1002/app.34052 Search in Google Scholar

13 Mnif, I. and Ghribi, D.: Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Peptide Sci, 104 (2015) 129–147. PMid:25808118; DOI:10.1002/bip.22630 Search in Google Scholar

14 Banat, I. M.: Characterization of biosurfactants and their use in pollution removal–State of the Art. Acta Biotechnologica, 15 (1995) 251–267 DOI:10.1002/abio.370150302 Search in Google Scholar

15 Pekdemir, T., Copur, M. and Urum, K.: Emulsification of crude oil–water systems using biosurfactants. Process Safety. Environ. Protection, 83 (2005) 38–46. DOI:10.1205/psep.03176 Search in Google Scholar

16 Yan, J., Wu, Z., Zhao, Y. and Jiang, C.: Separation of tea saponin by two-stage foam fractionation. Separation. purification tech, 80 (2011) 300–305. DOI:10.1016/j.seppur.2011.05.010 Search in Google Scholar

17 Liu, F., Ma, D., Luo, X., Zhang, Z., He, L., Gao, Y. and McClements, D. J.: Fabrication and characterization of protein-phenolic conjugate nanoparticles for codelivery of curcumin and resveratrol. Food hydrocolloids, 79 (2018) 450–461. DOI:10.1016/j.foodhyd.2018.01.017 Search in Google Scholar

18 Karlapudi, A. P., Venkateswarulu, T. C., Tammineedi, J., Kanumuri, L., Ravuru, B. K., Ramu Dirisala, V. and Kodali, V. P.: Role of biosurfactants in bioremediation of oil pollution-a review. Petroleum, 4 (2018) 241–249. DOI:10.1016/j.petlm.2018.03.007 Search in Google Scholar

19 Otzen, D. E.: Biosurfactants and surfactants interacting with membranes and proteins: same but different?. (BBA)-Biomembranes, 1859 (2017) 639–649. PMid:27693345; DOI:10.1016/j.bbamem.2016.09.024 Search in Google Scholar

20 Amani, H.: Synergistic effect of biosurfactant and nanoparticle mixture on microbial enhanced oil recovery. J. of Surfactant and Detergents, 20 (2017) 589–597. DOI:10.1007/s11743-017-1943-y Search in Google Scholar

21 Joonaki, E. and Ghanaatian, S.: The application of nanofluids for enhanced oil recovery: effects on interfacial tension and coreflooding process. Journal of Petroleum Science and Technology, 32 (2014) 2599–607. DOI:10.1080/10916466.2013.855228 Search in Google Scholar

Received: 2020-11-10
Accepted: 2021-02-02
Published Online: 2021-07-29
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston