Accessible Requires Authentication Published by De Gruyter July 29, 2021

Aggregation of Surfactants: Catalytic Reinforcement in Oxidation of Unsaturated E-Crotonaldehyde

Aggregation von Tensiden: Katalytische Verstärkung bei der Oxidation von ungesättigtem E-Crotonaldehyd
Atanu Rakshit, Suman Chowdhury, Animesh Acharjee, Kuheli Dome, Kripasindhu Karmakar and Bidyut Saha

Abstract

In this work, the kinetics of the micellar catalyzed oxidation of the unsaturated aliphatic aldehyde, E-crotonaldehyde in aqueous medium under pseudo 1st-order reaction condition was spectrophotometrically investigated at 25 °C. In the spectrophotometric measurement, the rate of the reaction was recorded by the decreasing intensity of the metallic oxidant, hexavalent chromium [Cr(VI)], in acidic aliquots at 450 nm with varying concentration of surfactants and/or heteroaromatic promoters. Spectral evidences have been produced in favour of the mechanistic approach and the product formation.

Zusammenfassung

In dieser Arbeit wurde die Kinetik der mizellar katalysierten Oxidation des ungesättigten aliphatischen Aldehyds, E-Crotonaldehyd im wässerigen Medium unter pseudo-1.-Ordnung-Reaktionsbedingung bei 25°C spektrophotometrisch untersucht. Bei der spektrophotometrischen Messung wurde die Reaktionsgeschwindigkeit durch die abnehmende Intensität des metallischen Oxidationsmittels, des sechswertigen Chroms [Cr(VI)], in sauren Aliquots bei 450 nm mit variierender Konzentration von Tensiden und/oder heteroaromatischen Promotoren erfasst. Es wurden spektrale Beweise für den mechanistischen Ansatz und die Produktbildung erbracht.


Prof. Bidyut Saha Homogeneous Catalysis Laboratory Department of Chemistry The University of Burdwan Burdwan 713104 WB, India Tel.: +91 9476341691

Abbreviations

CMC –

Critical Micelle Concentration

SDS –

Sodium dodecylsulfate

CPC –

Cetylpyridinium chloride

bpy –

2,2’-Bipyridine

phen –

1,10-Phenanthroline

PA –

2-Picolinic acid

References

1 Lipshutz, B. H., Ghorai, S. and Cortes-Clerget, M.: The Hydrophobic Effect Applied to Organic Synthesis: Recent Synthetic Chemistry \in Water". Chem. Eur. J. 24 (2018) 6672–6695. PMid:29465785; DOI:10.1002/chem.201705499 Search in Google Scholar

2 Sorella, G. L., Strukul, G. and Scarso, A.: Recent advances in catalysis in micellar media. Green Chem. 17 (2015) 644–683. DOI:10.1039/C4GC01368A Search in Google Scholar

3 Mandal, S., Mandal, S., Biswas, S. and Saha, B.: Synthesis of 4-Hydroxy-4-(4-nitrophenyl)butan-2-one using p-Nitro Benzaldehyde and Acetone in Aqueous Micellar Media using L-Proline. Tenside Surf. Det. 55 (2018) 325–330. DOI:10.3139/113.110566 Search in Google Scholar

4 Mandal, S., Mandal, S., Biswas, S., Mondal, M. H. and Saha, B.: Synthesis of 2-(Prop-2-ynyloxy) Benzaldehyde using Salicyl Aldehyde and Propargyl Bromide in Aqueous Micellar Media. Tenside Surf. Det. 56 (2019) 337–342. DOI:10.3139/113.110629 Search in Google Scholar

5 Acharjee, A., Rakshit, A., Chowdhury, S. and Saha, B.: Micellar and Transition Metal Ion Catalysed Oxidation of Pentanol in Aqueous Medium. Tenside Surf. Det. 57 (2020) 506–514. DOI:10.3139/113.110709 Search in Google Scholar

6 Acharjee, A., Rakshit, A., Chowdhury, S., Datta, I., Barman, M. K., Ali, Md. A. and Saha, B.: Micellar catalysed oxidation of hydrophobic fatty alcohol in aqueous medium. J. Mol. Liq. 293 (2019) 111475. DOI:10.1016/j.molliq.2019.111475 Search in Google Scholar

7 Chowdhury, S., Rakshit, A., Acharjee, A., Ghosh, A., Mahali, K. and Saha, B.: Trivalent Ruthenium and Iridium Salt: Excellent Homogeneous Catalysts for Cyclic Alcohol Oxidation in Micellar Media. Tenside Surf. Det. 57 (2020) 298–309. DOI:10.3139/113.110696 Search in Google Scholar

8 Rakshit, A., Chowdhury, S., Acharjee, A., Datta, I., Dome, K., Biswas, S., Bhattacharyya, S. S. and Saha, B.: Hetero-aromatic N-base-promoted oxidation of 4-chlorobenzyl alcohol by Cr(VI) in micellar media. Res. Chem. Intermed. 46 (2020) 2559–2578. DOI:10.1007/s11164-020-04106-x Search in Google Scholar

9 Sar, P., Ghosh, A., Malik, S., Ray, D., Das, B. and Saha, B.: Selective heteroaromatic nitrogen base promoted chromium(VI) oxidation of isomeric pentanols in aqueous micellar media at room temperature. J. Ind. Eng. Chem. 42 (2016) 53–62. DOI:10.1016/j.jiec.2016.07.028 Search in Google Scholar

10 Malik, S., Ghosh, A. and Saha, B.: Optimal Process Condition for Room Temperature Hetero-Aromatic Nitrogen Base Promoted Chromic Acid Oxidation of p-Chlorobenzaldehyde to p-Chlorobenzoic Acid in Aqueous Micellar Medium at Atmospheric Pressure. Tenside Surf. Det. 53 (2016) 94–104. DOI:10.3139/113.110414 Search in Google Scholar

11 Mukherjee, K., Saha, R., Ghosh, A., Ghosh, S. K. and Saha, B.: Combination of best promoter and catalyst for hypervalent chromium oxidation of l-sorbose to lactone of C5 aldonic acid in aqueous media at room temperature. J. Mol. Liq. 179 (2013) 1–6. DOI:10.1016/j.molliq.2012.12.012 Search in Google Scholar

12 Carruthers, W. and Coldham, I.: Modern Methods of Organic Synthesis, Cambridge University Press, 4th edition, 2004. DOI:10.1017/CBO9780511811494 Search in Google Scholar

13 Saha, B. and Orvig, C.: Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 254 (2010) 2959–2972. DOI:10.1016/j.ccr.2010.06.005 Search in Google Scholar

14 Saha, B., Islam, M. and Das, A. K.: Micellar Effects on the Reactions of Chromium(VI) Oxidation of Lactic Acid and Malic Acid in the Presence and Absence of Picolinic Acid in Aqueous Acid Media. Bioinorg. React. Mech. 6 (2006) 141–149. DOI:10.1515/IRM.2006.6.2.141 Search in Google Scholar

15 Blumenstein, J., Albert, J., Schulz, R. P. and Kohlpaintner, C.: Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015. DOI:10.1002/14356007.a08_083.pub2 Search in Google Scholar

16 Ghosh, A., Saha, R., Ghosh, S. K., Mukherjee, K. and Saha, B.: Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: A kinetic approach. Spectrochim. Acta A Mol. Biomol. Spectrosc. 109 (2013) 55–67. PMid:23501718; DOI:10.1016/j.saa.2013.02.019 Search in Google Scholar

17 Vogel, A. I.: Textbook of practical organic chemistry, 5th edn., ed. by Furniss, B. S., Hannaford, A. J., Smith, P. W. G. and Tatchell, A. R. Longman Group UK Limited, London, 1989, pp. 1344. Search in Google Scholar

18 Perez-Benito, J. F., Arias, C., Rodriguez, R. M. and Ros, M.: Kinetics and mechanism of the reduction of chromium(VI) by D-ribose. New J. Chem. 22 (1998) 1445–1451. DOI:10.1039/A803690J Search in Google Scholar

19 Cotton, F. A., Wilkinson, G., Murillo, C. A. and Bochmann, M.: Advanced Inorganic Chemistry, 6th edn., Wiley, New York, 1999. Search in Google Scholar

20 Yuan, C. L., Xu, Z. Z., Fan, M. X., Liu, H. Y., Xie, Y. H. and Zhu, T.: Study on characteristics and harm of surfactants. J. Chem. Pharm. Res. 6 (2014) 2233–2237. Search in Google Scholar

21 Figgis, B. N.: Introduction to Ligand Fields, Wiley Eastern Limited, New Delhi, India, 1966. Search in Google Scholar

22 Khan, Z. and Ud-Din, K.: Kinetics and mechanism of ethylenediaminetetraacetic acid-, 2,2’-bipyridyl-, and 1,10-phenanthroline-assisted chromium(VI) oxidation of 2-propanol. Transition Met. Chem. 27 (2002) 832–839. DOI:10.1023/A:1021382505230 Search in Google Scholar

23 Islam, M., Saha, B. and Das, A. K.: Kinetics and mechanism of picolinic acid promoted chromic acid oxidation of maleic acid in aqueous micellar media. J. Mol. Catal. A Chem. 266 (2007) 21–30. DOI:10.1016/j.molcata.2006.10.042 Search in Google Scholar

24 Perez-Benito, E. and Rodenas, E.: Influence of Sodium Dodecyl Sulfate Micelles on the Oxidation of Alcohols by Chromic Acid. Langmuir 7 (1991) 232–237. DOI:10.1021/la00050a005 Search in Google Scholar

25 Das, A. K.: Micellar effect on the kinetics and mechanism of chromium(VI) oxidation of organic substrates. Coord. Chem. Rev. 248 (2004) 81–99. DOI:10.1016/j.cct.2003.10.012 Search in Google Scholar

26 Chaubey, G. S., Das, S. and Mahanti, M. K.: Kinetics of oxidation of a,b-unsaturated aldehydes by quinolinium dichromate. Can. J. Chem. 81 (2003) 204–208. DOI:10.1139/V03-022 Search in Google Scholar

27 Ray, A. K., Saha, A. and Mukherjee, A. K.: A partition experimental evidence of molecular complex formation of some quinones with sodium dodecyl sulphate anion in aqueous phase by spectrophotometric method. Chem. Phys. Lett. 401 (2005) 72–75. DOI:10.1016/j.cplett.2004.11.029 Search in Google Scholar

28 Mirgorod, Y., Chekadanov, A. and Dolenko, T.: Structure of micelles of sodium dodecyl sulphate in water: an X-Ray and dynamic light scattering study. Chem. J. Mold. 14 (2019) 107–119. DOI:10.19261/cjm.2019.572 Search in Google Scholar

29 Almgren, M. and Swarup, S.: Size of sodium dodecyl sulfate micelles in the presence of additives i. alcohols and other polar compounds. J. Colloid Interface Sci. 91 (1983) 256–266. DOI:10.1016/0021-9797(83)90330-2 Search in Google Scholar

30 Paradies, H. H.: Shape and Size of a Nonionic Surfactant Micelle. Triton X-100 in Aqueous Solution. J. Phys. Chem. 84 (1980) 599–607. DOI:10.1021/j100443a008 Search in Google Scholar

Received: 1900-01-01
Accepted: 1900-01-01
Published Online: 2021-07-29
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston