Accessible Unlicensed Requires Authentication Published by De Gruyter September 25, 2021

Performance Evaluation of the Percarbonate and Perborate Bleach Activators Synthesized by a Low-Cost, Two-Step Method from Phenol

Leistungsbewertung von Percarbonat- und Perborat-Bleichaktivatoren, die durch eine kostengünstige, zweistufige Methode aus Phenol synthetisiert wurden
Omid Shojaei

Abstract

Bleach activators decrease the energy consumption and fabrics damage in the process of laundry and industrial cotton bleaching. Herein, we demonstrate a low-cost, two-step method for the synthesis of sodium nonanoyloxybenzene sulfonate and sodium lauroyloxybenzene sulfonate from phenol as a simple precursor material for efficient bleach activators. Initially, phenol was sulfonated to sodium p-phenolsulfonate. In the second step, it was acylated with nonanoyl chloride and dodecanoyl chloride to synthesize sodium nonanoyloxybenzene sulfonate and sodium lauroyloxybenzene sulfonate, respectively. Sodium p-phenolsulfonate and the obtained bleach activators were characterized by thermogravimetric analysis, IR-, and 1H NMR spectroscopy. The investigation of their detergency efficiency on different stains and substrates revealed that the as-synthesized bleach activators outperform the commercial tetraacetylethylenediamine (TAED) at room temperature (25°C). The detergency efficiency of sodium lauroyloxybenzene sulfonate for hydrophobic stains at a rather low temperature of 40°C remarkably rises to about 90%.

Zusammenfassung

Bleichaktivatoren verringern den Energieverbrauch und die Gewebeschädigung beim Waschen und bei der industriellen Baumwollbleiche. Hierin wird eine kostengünstige, zweistufige Methode zur Synthese von Natrium-Nonanoyloxybenzensulfonat und Natrium-Lauroyloxybenzensulfonat aus Phenol als einfaches Ausgangsmaterial für effiziente Bleichaktivatoren entwickelt. Zunächst wurde Phenol zu Natrium-p-phenolsulfonat sulfoniert. Im zweiten Schritt wurde es mit Nonanoylchlorid und Dodecanoylchlorid acyliert, um Natrium-Nonanoyloxybenzensulfonat bzw. Natrium-Lauroyloxybenzensulfonat zu erhalten. Natrium-p-phenolsulfonat und die erhaltenen Bleichaktivatoren wurden durch thermogravimetrische Analyse, IR- und 1H NMR-Spektroskopie charakterisiert. Die Untersuchung ihrer Reinigungswirkung auf verschiedenen Flecken und Substraten ergab, dass die so synthetisierten Bleichaktivatoren das kommerzielle Tetraacetylethylendiamin (TAED) bei Raumtemperatur (25°C) übertreffen. Die Waschkraft von Natriumlauroyloxybenzensulfonat für hydrophobe Flecken erhöht sich bei einer eher niedrigen Temperatur von 40°C bemerkenswerter auf ca. 90%.

  1. Conflict of Interest: The authors declare that they have no conflict of interest.

Acknowledgements

I would like to thank Behdash Chemical Co. for providing access to their facilities during the research and the University of Tehran for supporting the work. Furthermore, I would like to thank Prof. Abdoljalil Mostashari and Prof. Mehdi Ghandi for their helpful comments during working on the project.

References

1 Chen, W., Wang, L., Wang, D., Zhang, J., Sun, C. and Xu, C.: “Recognizing a limitation of the TBLC-activated peroxide system on low-temperature cotton bleaching,” Carbohydr. Polym., 140 (2016), 1–5, 2016. PMid:26876820; DOI:10.1016/j.carbpol.2015.12.013 Search in Google Scholar

2 Wei, D., Sun, C., Wang, M., Du, J. and Xu, C.: “Synthesis of N-[4-(dimethylalkylammoniomethyl) benzoyl]caprolactam chlorides as cationic bleach activators for low-temperature bleaching of cotton fabric under near-neutral pH conditions,” Color. Technol., 130 (6) (2014) 432–436. DOI:10.1111/cote.12116 Search in Google Scholar

3 Špička, N. and Tavčer, P. F.: “Low-temperature bleaching of knit fabric from regenerated bamboo fibers with different peracetic acid bleaching processes,” Text. Res. J., 85(14) (2015) 1497–1505. DOI:10.1177/0040517514563728 Search in Google Scholar

4 Xu, C., Long, X., Du, J. and Fu, S.: “A critical reinvestigation of the TAED-activated peroxide system for low-temperature bleaching of cotton,” Carbohydr. Polym., 92(1) (2013) 249–253. PMid:23218291; DOI:10.1016/j.carbpol.2012.08.088 Search in Google Scholar

5 Brands, B., Brinkmann, A., Bloomfield, S. and Bockmühl, D. P.: “Microbicidal Action of Heat, Detergents and Active Oxygen Bleach as Components of Laundry Hygiene,” Tenside Surfactants Deterg. 53(5) (2016) 495–501, 2016. DOI:10.3139/113.110464 Search in Google Scholar

6 Wang, G., de Aragão Umbuzeiro, G., Vendemiatti, J. A., Caloto de Oliveira, A., Inforçato Vacchi, F., Hussain, M., Hauser, P. J., Freeman, H. S. and Hinks, D.: “Synthesis, Characterization, and Toxicological Properties of New Cationic Bleach Activators,” J. Surfactants Deterg. 20(1) (2017) 277–285. DOI:10.1007/s11743-016-1899-3 Search in Google Scholar

7 Cuypers, L., Hirschen, M. and Reinhardt, G.: “Bleaching Product Development in View of Ecological Aspects,” Tenside Surfactants Deterg. 42(6) (2005) 342–346, 2005. DOI:10.3139/113.100277 Search in Google Scholar

8 Lavrič, P. K., Kovač, F., Tavčer, P. F., Hauser, P. and Hinks, D.: “Enhanced PAA bleaching of cotton by incorporating a cationic bleach activator,” Color. Technol 123(4) (2007) 230–236, 2007. DOI:10.1111/j.1478-4408.2007.00088.x Search in Google Scholar

9 Abdel-Halim, E. S. and Al-Deyab, S. S.: “One-step bleaching process for cotton fabrics using activated hydrogen peroxide,” Carbohydr. Polym., 92(2) (2013) 1844–1849. PMid:23399227; DOI:10.1016/j.carbpol.2012.11.045 Search in Google Scholar

10 Fei, X., Yao, J., Du, J., Sun, C., Xiang, Z. and Xu, C.: “Analysis of factors affecting the performance of activated peroxide systems on bleaching of cotton fabric,” Cellulose, 22(2) (2015) 1379–1388. DOI:10.1007/s10570-015-0550-1 Search in Google Scholar

11 Reinhardt, G.: “Fingerprints of bleach systems,” Journal of Molecular Catalysis A: Chemical 251(1–2) (2006) 177–184. DOI:10.1016/j.molcata.2006.02.029 Search in Google Scholar

12 Zeng, H. and Tang, R.-C.: “Application of a novel bleach activator to low temperature bleaching of raw cotton fabrics," The Journal of The Textile Institute 106(8) (2015) 807–813. DOI:10.1080/00405000.2014.945764 Search in Google Scholar

13 Luijkx, G. C. A., Hild, R., Krijnen, E. S., Lodewick, R., Rechenbach, T. and Reinhardt, G.: “Testing of the Fabric Damage Properties of Bleach Containing Detergents," Tenside Surfactants Deterg., vol. 41, no. 4, pp. 164–168, 2004. DOI:10.3139/113.100219 Search in Google Scholar

14 Reinhardt, G. and Ulshöfer, H.: “Testing Robustness and Compatibility of Colour Damaging Washing Tests," Tenside Surfactants Deterg., 43(1) (2006) 20–27. DOI:10.3139/113.100296 Search in Google Scholar

15 Bianchetti, G. O., Devlin, C. L. and Seddon, K. R.: “Bleaching systems in domestic laundry detergents: A review," RSC Adv., 80(5) (2015) 65365–65384, 2015. DOI:10.1039/C5RA05328E Search in Google Scholar

16 Sankey, J. P. and Sanderson, W. R.: “Preparation of Sulphonyl Esters," US4704236, 1986. Search in Google Scholar

17 Gary, M. B.: “Alkanoyloxybenzenesulfonate salt production," EP0125641,1984. Search in Google Scholar

18 Marvin, N.: “Preparation of acyloxy benzene sulfonate," EP0201222, 1986. Search in Google Scholar

19 Cambre, C. M., Hardy, F. E. and Kitko, D. J.: “Bleach compositions comprising non-linear aliphatic peroxycarboxylic acid precursors," US4,536,314, 1985. Search in Google Scholar

20 Gerd Reinhardt, H. J., Naumann, P., Ladwig, M., Golla, I., Pilz, T. and Wieduwilt, R. :\Process for the preparation of acyloxybenzenesulfonates," US6,369,096, 2003. Search in Google Scholar

21 Dumas, D. J. and Subramanyam, V.: “Process for preparing benzenesulfonate salts," US5,069,828, 1991. Search in Google Scholar

22 Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. A.: Cengage Learning India Pvt. Ltd; 5th Edition: Introduction To Spectroscopy, ISBN-13: 978–9381466476, ISBN-10: 9381466475. Search in Google Scholar

Received: 2020-12-14
Accepted: 2021-05-22
Published Online: 2021-09-25
Published in Print: 2021-09-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany