Accessible Unlicensed Requires Authentication Published by De Gruyter November 30, 2021

Screening of Biosurfactant Producing Bacteria Isolated from Hydrocarbon Contaminated Site and Their Potential in Biosorption of Pb(II) and Oil Biodegradation

Screening von Biosurfactant-produzierenden Bakterien, die von Kohlenwasserstoff-kontaminierten Standorten isoliert wurden, und ihr Potenzial für die Biosorption von Pb(II) und den Abbau von Öl
Swati Rastogi, Sheel Ratna and Rajesh Kumar

Abstract

In the present study, three potentially Pb(II)-resistant and biosurfactant-producing bacterial strains were isolated from a total of 23 strains using various screening methods, investigated for their biosorption of Pb(II) and used for the biodegradation of used motor oil. The results show that strain E1 (Bacillus haynesii) has significantly high efficiency in biodegradation of used motor oil, up to 82 % in the first three days. Maximum Pb(II) biosorption capacities of 238.09 mg/g and 99.01 mg/g were determined for strains E1 and F5 (Pseudomonas aeruginosa), respectively. The biosorption process was found to be in good agreement with the Langmuir isotherm for both E1 (R2 = 0.9614) and F5 (R2 = 0.9646), suggesting monolayer biosorption. The four common screening methods, namely the haemolytic assay, the determination of surface tension, the emulsifying activity and the foam test, were also correlated with the Pearson correlation method.

Zusammenfassung

In der vorliegenden Studie wurden drei potenziell Pb(II)-resistente und Biotensid-produzierende Bakterienstämme aus insgesamt 23 Stämmen mit Hilfe verschiedener Screening-Methoden isoliert, auf ihre Biosorption von Pb(II) untersucht und für den biologischen Abbau von gebrauchtem Motoröl eingesetzt. Die Ergebnisse zeigen, dass der Stamm E1 (Bacillus haynesii) eine signifikant hohe Effizienz beim biologischen Abbau von gebrauchtem Motoröl aufweist, nämlich bis zu 82 % in den ersten drei Tagen. Für die Stämme E1 und F5 (Pseudomonas aeruginosa) wurden maximale Pb(II)-Biosorptionskapazitäten von 238,09 mg/g bzw. 99,01 mg/g ermittelt. Es wurde festgestellt, dass der Biosorptions-prozess sowohl für E1 (R2 = 0,9614) als auch für F5 (R2 = 0,9646) gut mit der Langmuir-Isotherme übereinstimmt, was auf eine Monolayerbiosorption schließen lässt. Die vier gängigen Screening-Methoden, nämlich der hämolytische Assay, die Bestimmung der Oberflächenspannung, die Emulgieraktivität und der Schaumtest, wurden ebenfalls mit der Pearson-Korrelationsmethode korreliert.


Ms. Swati Rastogi Research Scholar Rhizosphere Biology Laboratory Department of Environmental Microbiology Babasaheb Bhimrao Ambedkar (A Central) University Vidya Vihar Raebareli Road Lucknow-226025 India Tel.: 07607487423

Funding statement: One of the authors (Sheel Ratna) is highly thankful to research grant 3721/(SC) (NET-NOV 2017) University Grant Commission, New Delhi, India.

References

1 Elazzazy, A. M., Abdelmoneim T. S. and Almaghrabi O. A.: Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia, Saudi J. Biol. Sci. 22 (2015) 466–475. PMid:26150754; DOI:10.1016/j.sjbs.2014.11.018 Search in Google Scholar

2 Tasker, T. L., Burgos, W. D., Piotrowski, P., Castillo-Meza, L., Blewett, T. A., Ganow, K. B., Stallworth, A., Delompré, P. L. M., Goss, G. G., Fowler, L. B. and Vanden Heuvel, J. P.: Environmental and human health impacts of spreading oil and gas wastewater on roads, Environ. Sci. Technol. 52 (2018) 7081–7091. PMid:29845864; DOI:10.1021/acs.est.8b00716 Search in Google Scholar

3 Khiyavi, A. D., Hajimohammadi, R., Amani, H. and Soltani, H.: Synergistic Effect of Rhamnolipid and Saponin Biosurfactants on Removal of Heavy Metals from Oil Contaminated Soils, Tenside Surfact. Det. 57 (2020) 109–114. DOI:10.3139/113.110672 Search in Google Scholar

4 Maurya, P. K., Malik, D. S., Yadav, K. K., Kumar, A., Kumar, S. and Kamyab, H.: Bioaccumulation and potential sources of heavy metal contamination in fish species in River Ganga basin: Possible human health risks evaluation, Toxicol. Rep. 6 (2019) 472–481. PMid:31193923; DOI:10.1016/j.toxrep.2019.05.012 Search in Google Scholar

5 Ratna, S., Rastogi, S., and Kumar, and R. Phytoremediation: A Synergistic Interaction between Plants and Microbes for Removal of Unwanted Chemicals/ Contaminants. In: Microbes and Signaling Biomolecules against Plant Stress (Eds.: A. Sharma) p. 199–222 (2021a). DOI:10.1007/978-981-15-7094-0_11 Search in Google Scholar

6 Rastogi, S., Kumar, J., and Kumar, R.: An Investigation into the efficacy of Fungal Biomass as a Low Cost Bio-adsorbent for the removal of Lead from aqueous solutions, Int. Res. J. Eng. Technol. 6 (2019) 7144–7149. Search in Google Scholar

7 Rastogi, S. and Kumar, R.: Remediation of heavy metals using non-conventional adsorbents and biosurfactant-producing bacteria. In: Environmental Degradation: Causes and Remediation Strategies (Eds.: V. Kumar, J. Singh and P. Kumar) p. 133–153 (2020). PMid:31715368; DOI:10.26832/aesa-2020-edcrs-010 Search in Google Scholar

8 Kasmi, M., Benderrag, A., Haddou, B., Daaou, M., Canselier, J. P. and Gourdon, C.: Removal of Lead (II) from Aqueous Solution Using Triton X-114 in the Presence of Alanine or Phenylalanine as Biodegradable System. Tenside Surfact. Det. 57 (2020) 521–539; DOI10.3139/113.110706. DOI:10.3139/113.110711 Search in Google Scholar

9 Rastogi, S., Ratna, S., Said, O. B. and Kumar, R.: Physiological and Molecular Aspects of Retrieving Environmental Stress in Plants by Microbial Interactions. In: Microbes and Signaling Biomolecules against Plant Stress (Eds.: A. Sharma) p. 107–125 (2021a). DOI:10.1007/978-981-15-7094-0_6 Search in Google Scholar

10 Ratna, S., Rastogi, S., and Kumar, R.: Current trends for distillery wastewater management and its emerging applications for sustainable environment. Journal of Environmental Management, 290 (2021b), 112544. PMid:33862317; DOI:10.1016/j.jenvman.2021.112544 Search in Google Scholar

11 Kholghi, N., Amani, H., Malekmahmoodi, S. and Amiri, A.: Investigation on Heavy Metal Removal from a Crude Oil Contaminated Soil using Rhamnolipid Biosurfactant as a new eco-Friendly Method, tenside Surfact. Det. 57 (2020) 515–520. DOI:10.3139/113.110710 Search in Google Scholar

12 Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y. and Imanaka, T.: A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38, J. Bacteriol. 175 (1993) 6459–6466. PMid:8407822; DOI:10.1128/jb.175.20.6459-6466.1993 Search in Google Scholar

13 Bodour, A. A. and Miller-Maier, R. M.: Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms, J. Microbiol. Methods. 32 (1998) 273–280. DOI:10.1016/S0167-7012(98)00031-1 Search in Google Scholar

14 Maczek, J., Junne, S. and Gotz, P.: Examining biosurfactant producing bacteriaan example for an automated search for natural compounds, Application Note CyBio AG. (2007). Search in Google Scholar

15 Techaoei, S., Leelapornpisid, P., Santiarwarn, D. and Lumyong, S.: Preliminary screening of biosurfactant-producing microorganisms isolated from hot spring and garages in Northern Thailand, CAST. 7 (2007) 38–43. Search in Google Scholar

16 Abouseoud, M., Maachi, R., Amrane, A., Boudergua, S. and Nabi, A.: Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens, Desalination. 223 (2008) 143–151. 10.1016/j.desal.2007.01.198 Search in Google Scholar

17 Carrillo, P. G., Mardaraz, C., Pitta-Alvarez, S. I. and Giulietti, A. M.: Isolation and selection of biosurfactant-producing bacteria, World J. Microbiol. Biotechnol.12 (1996) 82–84. PMid:24415095; DOI:10.1007/BF00327807 Search in Google Scholar

18 Siegmund, I. and Wagner, F.: New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar, Biotechnol. Tech. 5 (1991) 265–268. DOI:10.1007/BF02438660 Search in Google Scholar

19 Lee, B. B., Ravindra, P. and Chan, E. S.: A critical review: surface and interfacial tension measurement by the drop weight method, Chem. Eng. Comm. 195 (2008) 889–924. DOI:10.1080/00986440801905056 Search in Google Scholar

20 Rosenberg, M., Gutnick, D. and Rosenberg, E.: Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity, FEMS Microbiol. Lett. 9 (1980) 29–33. DOI:10.1111/j.1574-6968.1980.tb05599.x Search in Google Scholar

21 Adeline, S. Y., Carol, H. T. and Aw, C. S.: Hydrocarbon-degradation by isolate Pseudomonas lundensis UTAR FPE2, Mal. J. Microbiol, 5, 104–108; (2009). Search in Google Scholar

22 Mohapatra, R. K., Parhi, P. K., Pandey, S., Bindhani, B. K., Thatoi, H. and Panda, C. R.: Active and passive biosorption of Pb (II) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: Kinetics and isotherm studies, J. Environ. Manage. 247 (2019) 121–134. PMid:31238200; DOI:10.1016/j.jenvman.2019.06.073 Search in Google Scholar

23 Nayarisseri, A., Singh, P. and Singh, S. K.: Screening, isolation and characterization of biosurfactant-producing Bacillus tequilensis strain ANSKLAB04 from brackish river water, Int. J. Environ. Sci.Technol. 16 (2019) 7103–7112. DOI:10.1007/s13762-018-2089-9 Search in Google Scholar

24 Mulligan, C. N. and Gibbs, B. F.: Correlation of nitrogen metabolism with bio-surfactant production by Pseudomonas aeruginosa, Appl. Environ. Microbiol. 55 (1989) 3016–3019; 0099–2240/89/113016–04$02.00/0. PMid:2516435; DOI:10.1128/aem.55.11.3016-3019.1989 Search in Google Scholar

25 Zouari, O., Lecouturier, D., Rochex, A., Chataigne, G., Dhulster, P., Jacques, P.and Ghribi, D.: Bio-emulsifying and biodegradation activities of syringafactin producing Pseudomonas spp. strains isolated from oil contaminated soils, Biodegradation. 30 (2019) 259–272. PMid:30390188; DOI:10.1007/s10532-018-9861-x Search in Google Scholar

26 Varjani, S. J., Rana, D. P., Bateja, S., Sharma, M. C. and Upasani, V. N.: Screening and identification of biosurfactant (bioemulsifier) producing bacteria from crude oil contaminated sites of Gujarat, India, Int. J. Inno. Res. Sci. Eng. Technol, 3 (2014) 9205–9213. Search in Google Scholar

27 Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M. and McInerney, M. J.: Comparison of methods to detect biosurfactant production by diverse microorganisms, J. Microbiol. Methods. 56 (2004) 339–347. PMid:14967225; DOI:10.1016/j.mimet.2003.11.001 Search in Google Scholar

28 Vishan, I., Saha, B., Sivaprakasam, S. and Kalamdhad, A.: Evaluation of Cd (II) biosorption in aqueous solution by using lyophilized biomass of novel bacterial strain Bacillus badius AK: Biosorption kinetics, thermodynamics and mechanism, Environ. Technol. Innov. 14 (2019), 100323. DOI:10.1016/j.eti.2019.100323 Search in Google Scholar

29 Rastogi, S., Tiwari, S., Ratna, S. and Kumar, R.: Utilization of Agro-industrial waste for Biosurfactant Production under Submerged Fermentation and its Synergistic Application in Biosorption of Pb2+. Bioresource Technology Reports. 15 (2021b), 100706. DOI:10.1016/j.biteb.2021.100706 Search in Google Scholar

30 Ren, G., Jin, Y., Zhang, C., Gu, H. and Qu, J.: Characteristics of Bacillus sp. PZ-1 and its biosorption to Pb (II). Ecotoxicology and environmental safety, 117 (2015), 141–148. PMid:25855213; DOI:10.1016/j.ecoenv.2015.03.033 Search in Google Scholar

31 Tunali, S., Çabuk, A. and Akar, T.: Removal of lead and copper ions from aqueous solutions by bacterial strain isolated from soil. Chemical Engineering Journal, 115 (2006), 203–211. DOI:10.1016/j.cej.2005.09.023 Search in Google Scholar

32 Li, D., Xu, X., Yu, H. and Han, X.: Characterization of Pb2+ biosorption by psychrotrophic strain Pseudomonas sp. I3 isolated from permafrost soil of Mohe wetland in Northeast China. Journal of environmental management, 196 (2017), 8–15. PMid:28284141; DOI:10.1016/j.jenvman.2017.02.076 Search in Google Scholar

33 Garole, D. J., Choudhary, B. C., Paul, D. and Borse, A. U.: Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent. Environ Sci Pollut Res, 25 (2018), 10911–10925. PMid:29397510; DOI:10.1007/s11356-018-1351-5 Search in Google Scholar

34 Rastogi, S. and Kumar, R.: Statistical optimization of biosurfactant production using waste biomaterial and biosorption of Pb2+ under concomitant submerged fermentation. Journal of Environmental Management, 295 (2021), 113158. DOI:10.1016/j.jenvman.2021.113158 Search in Google Scholar

Received: 2020-12-22
Accepted: 2021-06-30
Published Online: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany