Accessible Requires Authentication Published by De Gruyter July 29, 2021

Stability of the PEG Fatty Acid Glycerides Based O/W Emulsions

Stabilität von PEG-Fettsäureglyceriden basierenden O/W-Emulsionen
Zihan Wang, Liangliang Lin and Hujun Xu


In the present work, oil-in-water (O/W) emulsion systems were prepared by using the PEG-7 lauric acid glycerides as the emulsifiers and the liquid paraffin as the oil phase. The influence of processing parameters such as emulsification temperature, stirring speed, emulsifier concentration, oil-water volume ratio and polymer addition on the stability of the emulsion systems was investigated. In order to determine the optimal conditions for the preparation of the emulsion systems based on PEG-7 lauric acid glycerides, a laser drop size analyser and a rotational rheometer were used. As the stability of the O/W emulsion systems increased, the average droplet size of the O/W emulsions measured by the laser droplet size analyser became smaller and the viscosity, storage modulus and loss modulus of the O/W emulsions measured by the rotational rheometer became larger. The following optimal conditions were determined in this study: emulsification temperature 80°C, stirring speed 500 r/min, emulsifier concentration 5 wt%, oil-water volume ratio 1:1 and added amount of xanthan gum 0.2 wt%. The droplet morphology of the O/W emulsion prepared under the optimal conditions, which was characterised by a super high magnification microscope, is small. Furthermore, the long-term stability of the emulsion system prepared under the optimal conditions was investigated over a period of time (4 weeks). The O/W emulsion proves to be well stable even after 4 weeks, with a water separation rate of 0%.


In der vorliegenden Arbeit wurden Öl-in-Wasser (O/W)-Emulsionssysteme aus Wasser und flüssigem Paraffin als Ölphase unter Verwendung der PEG-7-Laurinsäureglyceride hergestellt. Der Einfluss der Verarbeitungsparameter wie Emulgiertemperatur, Rührgeschwindigkeit, Emulgatorkonzentration, Öl-Wasser-Volumenverhältnis und Polymerzugabe auf die Stabilität der Emulsionssysteme wurde untersucht. Um die optimalen Bedingungen für die Herstellung der Emulsionssysteme auf Basis von PEG-7-Laurinsäureglyceriden zu bestimmen, wurden ein Lasertropfengrößenanalysator und ein Rotationsrheometer eingesetzt. Mit zunehmender Stabilität der O/W-Emulsionssysteme, wurde die mit dem Lasertropfengrößenanalysator gemessene durchschnittliche Tröpfchengröße der O/W-Emulsionen kleiner und die mit dem Rotationsrheometer gemessene Viskosität, der Speichermodul und der Verlustmodul der O/W-Emulsionen wurden größer. Folgende optimale Bedingungen wurden in dieser Untersuchung ermittelt: Emulgiertemperatur 80°C, Rührgeschwindigkeit 500 r/min, Emulgatorenkonzentration 5 Gew.-%, Öl-Wasser-Volumenverhältnis 1:1 und zugegebene Menge an Xanthangummi 0,2 Gew.-%. Die Tröpfchenmorphologie der unter den optimalen Bedingungen hergestellten O/W-Emulsion, die mit einem superstarken Vergrößerungsmikroskop charakterisiert wurde, ist klein. Des Weiteren wurde die Langzeitstabilität des unter der optimalen Bedingung hergestellten Emulsionssystems über einen Zeitraum (4 Wochen) untersucht. Die O/W-Emulsion erweist sich auch nach 4 Wochen noch als sehr stabil, mit einer Wasserausscheidungsrate von 0%.

Prof. Dr. Hujun Xu School of Chemical & Material Engineering Jiangnan University Wuxi China


The authors greatly appreciate the funding support from the Fundamental Research Funds for the Central Universities (JUSRP221018), Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University (YJ2020-05), and Key Laboratory of Cosmetic Safety Assessment, National Medical Products Administration, Guangdong Institute for Drug Control (KF2021014).


1 Pei, L. J., Luo, Y. N., Gu, X. M. and Wang, J. P.: Formation, stability and properties of hemp seed oil emulsions for application in the cosmetics industry. Tenside Surfactants Detergents. 57 (2020) 451–459. DOI:10.3139/113.110712 Search in Google Scholar

2 Rakowska, J., Radwan, K., Ślosorz, Z., Porycka, B. and Norman, M.: Selection of surfactants on the basis of foam and emulsion properties to obtain the firefighting foam and the degreasing agent. Tenside Surfactants Detergents 51 (2014) 215–219. DOI:10.3139/113.110300 Search in Google Scholar

3 Aburto, J., Márquez, D. M., Navarro, J. C. and Martínez-Palou, R.: Amphiphilic choline carboxylates as demulsifiers of water-in-crude oil emulsions. Tenside Surfactants Detergents 51(2014) 313–317. DOI:10.3139/113.110312 Search in Google Scholar

4 Al-Sabagh, A. M., Sharaky, A., Noor El-Din, M. R. and Hussein, K. M.: Destabilization of gas condensate oil-water emulsion by dissolved air flotation using new non-ionic surfactants. Tenside Surfactants Detergents 52(2015) 88–98. DOI:10.3139/113.110352 Search in Google Scholar

5 Moradi, M., Alvarado, V. and Huzurbazar, S.: Effect of salinity on water-in-crude oil emulsion: evaluation through drop-size distribution proxy. Energy & Fuels. 25(2011) 260–268. DOI:10.1021/ef101236h Search in Google Scholar

6 Goswami, A. and Bhagwat, S.: Study of underwater contact angles for formulation of fatliquoring emulsions using green surfactants. Tenside Surfactants Detergents 52(2015) 245–251. DOI:10.3139/113.110372 Search in Google Scholar

7 Fiume, M. M., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D. C., Marks, J. G. Jr., Shank, R. C., Slaga, T. J., Snyder, P. W., Gill, L. J. and Heldreth, B.: Safety assessment of PEGylated alkyl glycerides as used in cosmetics. International Journal of Toxicology 39(2020) 26–58. PMid:32975154; DOI:10.1177/1091581820951557 Search in Google Scholar

8 Wang, G., Wang, J. J., Chen, X. L., Du, L. and Li, F.: Quercetin-loaded freeze-dried nanomicelles: improving absorption and anti-glioma efficiency in vitro and in vivo. Journal of Controlled Release 235(2016) 276–290. PMid:27242199; DOI:10.1016/j.jconrel.2016.05.045 Search in Google Scholar

9 Lupi, F. R., Gabriele, D., De Cindio, B., Sánchez, M. C. and Gallegos, C.: A rheological analysis of structured water-in-olive oil emulsions. Journal of Food Engineering 107(2011) 296–303. DOI:10.1016/j.jfoodeng.2011.07.013 Search in Google Scholar

10 Constantinides, P. P., Scalart, J. P., Lancaster, C., Marcello, J., Marks, G., Ellens, H. and Smith, P. L.: Formulation and intestinal absorption enhancement evaluation of water-in-oil microemulsions incorporating medium-chain glycerides. Pharmaceutical research 11(1994) 1385–1390. PMid:7855039; DOI:10.1023/A:1018927402875 Search in Google Scholar

11 Khalfallah, A., Kriaa, A. and Hedhli, A.: Influence of the hydro/fluorocarbon chain length on CMC and HLB of surface-active nonionic surfactants containing polyethylene glycol groups. Tenside Surfactants Detergent. 55(2018) 246–251. DOI:10.3139/113.110560 Search in Google Scholar

12 Chen, M. L., Wang, Z. W. and Duan, H. J.: QSPR for HLB values of nonionic surfactants using two simple descriptors. Journal of Dispersion Science and Technology. 30 (2009) 1481–1485. DOI:10.1080/01932690903123338 Search in Google Scholar

13 Schott, H.: Hydrophile-lipophile balance and cloud points of nonionic surfactants. Journal of Pharmaceutical Sciences 58(1969) 1443–1449. PMid:5353256; DOI:10.1002/jps.2600581203 Search in Google Scholar

14 Doxastakis, G. and Sherman, P.: The interaction of sodium caseinate with monoglyceride and diglyceride at the oil-water interface in corn oil-in-water emulsions and its effect on emulsion stability Colloid and Polymer Science. 262(1984) 902–905. DOI:10.1007/BF01452222 Search in Google Scholar

15 Reeve, M. J. and Sherman, P.: The interaction of modified 7 S soy protein with mono- and diglycerides at the oil-in-water interface and its effect on the stability of concentrated corn oil-in-water emulsions. Colloid and Polymer Science 266(1988) 930–936. DOI:10.1007/BF01410849 Search in Google Scholar

16 Da Fonseca Antunes, A. B., De Geest, B. G., Vervaet, C. and Remon, J. P.: Gelucire 44/14 based immediate release formulations for poorly water-soluble drugs. Drug Development and Industrial Pharmacy 39 (2013) 791–798. PMid:22871141; DOI:10.3109/03639045.2012.709251 Search in Google Scholar

17 Xuan, X. Y., Cheng, Y. L. and Acosta, E.: Lecithin-linker microemulsion gelatin gels for extended drug delivery. Pharmaceutics 4 (2012) 104–129. PMid:24300183; DOI:10.3390/pharmaceutics4010104 Search in Google Scholar

18 Goodarzi, F. and Zendehboudi, S.: A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Canadian Journal of Chemical Engineering 97(2019) 281–309. DOI:10.1002/cjce.23336 Search in Google Scholar

19 Jafari, S. M., Assadpoor, E., He, Y. H. and Bhandari, B.: Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll. 22 (2007) 1191–1202. DOI:10.1016/j.foodhyd.2007.09.006 Search in Google Scholar

20 Håkansson, A. and Hounslow, M. J.: Simultaneous determination of fragmentation and coalescence rates during pilot-scale high-pressure homogenization. Journal of Food Engineering 116(2013) 7–13. DOI:10.1016/j.jfoodeng.2012.11.002 Search in Google Scholar

21 Serrallach, J. A., Jones, G. and Owen, R. J.: Strength of emulsifier films at liquid-liquid interfaces. Industrial & Engineering Chemistry 25(1933) 816–819. DOI:10.1021/ie50283a024 Search in Google Scholar

22 McClements, D. J. and Jafari, S. M.: Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251(2018) 55–79. PMid:29248154; DOI:10.1016/j.cis.2017.12.001 Search in Google Scholar

23 Benmaza, K., Zaïd, T. A. and Chitour, C. E.: Effect of polymer in a dishwashing detergent. Tenside Surfactants Detergents 44(2007) 102–109. DOI:10.3139/113.100331 Search in Google Scholar

24 Akiyama, E., Kashimoto, A., Fukuda, K., Hotta, H., Suzuki, T. and Kitsuki, T.: Thickening properties and emulsification mechanisms of new derivatives of polysaccharides in aqueous solution. Journal of Colloid and Interface Science 282 (2005) 448–457. PMid:15589552; DOI:10.1016/j.jcis.2004.08.178 Search in Google Scholar

Received: 2020-12-27
Accepted: 2021-02-22
Published Online: 2021-07-29
Published in Print: 2021-07-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston