Accessible Unlicensed Requires Authentication Published by De Gruyter November 30, 2021

Preparation and Performance Evaluation of Gemini Sulphobetaine Surfactant Bis{[(N-methyl-N-(3-alkoxy-2-hydroxy) propyl-N-(3-sulfonic) propyl] methylene}

Herstellung und Leistungsbewertung des Gemini-Sulfobetaintensids Bis{[(N-Methyl-N-(3-alkoxy-2-hydroxy)propyl-N-(3-sulfonsäure) propyl]methylen}
Zhonghua Zuo, Ming Zhou, Mao Liao, Pengao Peng and Jingfeng Zhang

Abstract

Surfactants are very often used in tertiary oil production. However, the conventional surfactants cannot be used in high salinity reservoirs of tertiary oil production because the high salinity leads to the deactivation of the surfactants. Gemini sulpho-betaine surfactants have been developed to meet the requirements of tertiary oil production in such reservoirs. In this study, the Gemini sulphobetaine surfactant (bis{[(N-methyl-N-(3-alkoxy-2-hydroxy)propyl-N-(3-sulfonate)propyl]methylene}) was prepared by etherification, ring opening reaction and sulfonation reaction with decyl alcohol, epichlorohydrin, N,N’-dimethyl ethylene diamine and 1,3-propanesultone. The experimental conditions obtained are: the ratio of 1,3-propanesulfonic acid lactone to tertiary amine intermediate = 2.3 : 1, reaction temperature = 70°C and reaction time = 11 h. The analysis of the infrared spectrum showed that the structure of the synthesised substance corresponds to that of a Gemini sulphobetaine surfactant. The chemical shifts of the groups were determined by 1HNMR structural characterisation of the products. The surface tension, emulsifying properties, foaming properties and wetting properties were investigated. The results showed that the surfactant has good foaming properties and good compatibility in a high salt environment.

Zusammenfassung

Tenside werden sehr oft in der tertiären Ölförderung eingesetzt. Die herkömmlichen Tenside können in hoch salzhaltigen Lagerstätten der tertiären Ölförderung jedoch nicht verwendet werden, da der hohe Salzgehalt zur Deaktivierung der Tenside führt. Gemini-Sulfobetaintenside wurden entwickelt, um den Anforderungen der tertiären Ölförderung in derartigen Lager-stätten gerecht zu werden. In dieser Studie wurde das Gemini-Sulfobetaintensid (Bis{[(N-methyl-N-(3-alkoxy-2-hydroxy)propyl-N-(3-sulfonat)propyl]methylen}) durch Veretherung, Ringöffnungs-reaktion und Sulfonierungsreaktion mit Decylalkohol, Epichlorhydrin, N,N’-Dimethylethylendiamin und 1,3-Propansulton hergestellt. Die erhaltenen Versuchsbedingungen sind: Verhältnis von 1,3-Propansulfonsäurelacton zu tertiärem Amin-Zwischen-produkt = 2,3 : 1; Reaktionstemperatur = 70°C und Reaktionszeit = 11 h. Die Analyse des Infrarotspektrums zeigte, dass die Struktur der synthetisierten Substanz mit der eines Gemini-Sulfobetaintensids übereinstimmt. Die chemischen Verschiebungen der Gruppen wurden durch die strukturelle Charakterisierung der Produkte mittels 1H-NMR ermittelt. Untersucht wurden die Oberflächenspannung, die Emulgiereigenschaften, die Schaumeigenschaften und die Benetzungseigenschaften. Die Ergebnisse zeigten, dass das Tensid gute Schaumeigenschaften und eine gute Kompatibilität in einer Umgebung mit hohem Salzgehalt aufweist.

Funding statement: This research is supported by National Natural Science Foundation of China (Projects No. 51074133), Major Frontier Projects of Application Foundation in Sichuan Province (No. 19YYJC1537), Project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Projects No. PLN201807), and Major Frontier Projects of Application Foundation in Sichuan Province (Projects No. 2019YJ0421).

  1. Conflicts of Interest

    The authors declare no conflicts of interest.

References

1 Li, X, Hu, Z. Y, Zhu, H. L., Zhao, S. F. and Cao, D. L.: Synthesis and Properties of Novel Alkyl Sulfonate Gemini Surfactants. J Surfact Deterg. 13 (2010) 353–359. DOI:10.1007/s11743-010-1188-5 Search in Google Scholar

2 Zana, R.: Dimeric (Gemini) surfactants: effect of spacer group on the association behavior in aqueous solution. J Colloid Interface Sci. 248 (2002) 203–220. PMid:16290524; DOI:10.1006/jcis.2001.8104 Search in Google Scholar

3 Murguı’a, M. C., Cristaldi, M. D., Porto, A, Di Conza, J. and Grau, R. J.: Synthesis, surface-active properties, and antimicrobial activities of new neutral and cationic tetrameric surfactants. J Surfactants Deterg. 11 (2008) 41–48. DOI:10.1007/s11743-007-1052-4 Search in Google Scholar

4 Zhou, M, Zhao, J. and Hu, X.: Synthesis of Bis[N,N-(alkylamideethyl) ethyl] triethylenediamine bromide surfactants and their oilfield application investigation. J Surfactants Deterg. 15 (2012) 309–315. DOI:10.1007/s11743-011-1313-0 Search in Google Scholar

5 Magdassi, S., Ben Moshe, M., Talmon, Y. and Danino, D.: Microemulsions based on anionic Gemini surfactant. Colloids Surf A. 212 (2003) 1. DOI:10.1016/S0927-7757(02)00294-7 Search in Google Scholar

6 Du, X., Lu, Y., Li, L., Wang, J. and Yang, Z.: Synthesis and unusual properties of novel alkylbenzene sulfonate Gemini surfactants. Colloids Surf A. 290 (2006) 132–137. 10.1016/j.colsurfa.2006.05.013 Search in Google Scholar

7 Zhou, M., Li, S., Zhang, Z., Wang, C., Luo, G. and Zhao, J.: Progress in the synthesis of zwitterionic Gemini surfactants. J Surfactants Deterg. 20 (2017) 1243–1254. DOI:10.1007/s11743-017-2014-0 Search in Google Scholar

8 Bunton, C. A, Robinson, L, Schaak, J. and Stam, M. F.: Catalysis of nucleo-philic substitutions by micelles of dicationic detergents. J. Org. Chem. 36 (1971) 2346–2350. DOI:10.1021/jo00815a033 Search in Google Scholar

9 Menger, F. M. and Littau, C. A.: Gemini Surfactants: Synthesis and Properties; J. Am. Chem. Soc. 113(4) (1991), 1451–1452. DOI 10.1021/ja00004a077. DOI:10.1021/ja00004a077 Search in Google Scholar

10 Zana, R. and Levy, H: Alkanediyl-a,x-bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants) Part 6. CMC of the ethanediyl-1,2-bis(dimethylalkylammonium bromide) series. Colloids and Surfaces A: Physico-chemical and Engineering Aspects. 127 (1997) 229–232. DOI:10.1016/S0927-7757(97)00142-8 Search in Google Scholar

11 Hubbard, A.: Gemini Surfactants: Synthesis, Interfacial and Solution-Phase Behavior, and Applications: Raoul Zana and Jiding Xia (Eds.), Dekker, New York, 2004, 331 pp. J. Colloid Interface Sci. 272 (2004) 502. DOI:10.1016/j.jcis.2003.12.054 Search in Google Scholar

12 Petrova-Miladinova, M. and Konstantinova, T. N.: On the synthesis of some reactive triazine azo-dyes containing tetramethylpiperidine fragment. Dyes Pigm. 67 (2005) 63–69. DOI:10.1016/j.dyepig.2004.10.011 Search in Google Scholar

13 El-Aila, H. J. Y.: Effect of urea and salt on micelle formation of zwitterionic surfactants. J. Surfactants Deterg. 8 (2005) 165–168.DOI:10.1007/s11743-005-342-6 Search in Google Scholar

14 Negm Nabel, A. and Morsy Salwa, M. I.: Corrosion inhibition of triethanolammonium bromide mono-and dibenzoate as cationic inhibitors in an acidic medium. J. Surfactants Deterg. 8 (2006) 283–287. DOI:10.1007/s11743-005-0359-x Search in Google Scholar

15 Emregül Kaan, C., Abdülkadir Akay, A. and Atakol, O.: The corrosion inhibition of steel with schiff base compounds in 2 M HCl. Mater Chem Phys. 93 (2005) 325–329. DOI:10.1016/j.matchemphys.2005.03.008 Search in Google Scholar

16 Dadgamezhad, A., Sheikhshoaie, I. and Baghaei, F.: Corrosion inhibitory effects of a new synthetic symmetrical schiff base on carbon steel in acid media. Anti – Corrosion Methods and Materials. 51 (2004) 266–271. DOI:10.1108/00035590410541337 Search in Google Scholar

17 Zhou M, Wang G, Xu YY, Zhang Z, Li SS, Hu BH, Zhao YL.: Synthesis and performance evaluation of CO2/N2 switchable tertiary amine Gemini surfactant. J Surfactants Deterg. 20 (2017) 1483–1489. DOI:10.1007/s11743-017-2019-8 Search in Google Scholar

18 Zhou M, Zhong X, Zhao J and Wang X.: Synthesis and surface active properties of 1,1,1,1-tetra-(2-oxypropyl sulfonate-3-alkylether-propoxy) neopentanes. J Surfactants Deterg. 16 (2013) 285–290. DOI:10.1007/s11743-012-1420-6 Search in Google Scholar

19 Zhou M., Zhao, J., Wang, X., Jing, J. and Zhou, L.: Synthesis and Characterization of Novel Surfactants 1, 2, 3-tri (2-oxypropylsulfonate-3-alkylether propoxy) Propanes. J Surfactants Deterg. 16 (2013) 665–672. DOI:10.1007/s11743-013-1442-8 Search in Google Scholar

20 Zhou, M., Bu, J. C., Wang, J., Guo, X., Huang, J. and Huang, M.: Study on three phase foam for Enhanced Oil Recovery in extra-low permeability reservoirs. Oil Gas Sci. Technol. 73 (2018) 55. DOI:10.2516/ogst/2018059 Search in Google Scholar

21 Zhou, M., Zhao, J., Wang, X. and Yang, Y.: Research on surfactant flooding in high-temperature and high-salinity reservoir for enhanced oil recovery. Tenside, Surf. Det. 50 (2013) 175–181. DOI:10.3139/113.110245 Search in Google Scholar

22 Eastoe, J., Downer, A., Paul, A., Rankin, A., Tribe, K. and Penfold, J.: Nave S.: Adsorption of ionic surfactants at the air–solution interface. Langmuir. 16 (2000) 4511–4518. DOI:10.1021/la991564n Search in Google Scholar

23 Zhou M, Luo G, Zhang Z, Li S and Wang C.: Synthesis and properties evaluation of sulfobetaine surfactant with double hydroxyl. J. Mol. Struct. 1144 (2017) 199–205. DOI:10.1016/j.molstruc.2017.05.023 Search in Google Scholar

24 Zhou M, Zhang Z, Hou L, Nie X, Zhou L, Zhao J and Guo X.: Synthesis and performance of a series of dual hydroxyl sulfobetaine surfactants. J. Disper Sci. Technol. 39 (2018) 116–121. DOI:10.1080/01932691.2017.1300908 Search in Google Scholar

25 Zhou, M., Li, S., Zhang, Z., Luo, G. and Zhao, J.: Synthesis of oligomer betaine surfactant (DDTPA) and rheological properties of wormlike micellar solution system. J. Taiwan Inst. Chem. Eng. 66 (2016) 1–11. DOI:10.1016/j.jtice.2016.05.013 Search in Google Scholar

26 Liu, Z, Gao, R, Dong, Z., Li, X. and Zhao, J.: Quaternary Ammonium Gemini Surfactants Used in Enhanced Oil Recovery: Synthesis, Properties, and Flooding Experiments. Tenside Surfactants Detergents. 54 (2017) 260–271. DOI:10.3139/113.110489 Search in Google Scholar

27 Zhou, M., Wang, C., Xing, T., Li, S., Zhang., Z. and Luo, G.: Studies on foam flooding for saline reservoirs after polymer flooding. J. Petrol. Sci. Eng. 135 (2015) 410–420. DOI:10.1016/j.petrol.2015.09.020 Search in Google Scholar

28 Ren, W., Niu, R., Liao, L. and Song, H.: Progress in the synthesis of Geminibetaine surfactants. Chemistry. 78 (2015) 10–15. DOI:10.14159/j.cnki.0441-3776.2015.01.002 Search in Google Scholar

29 Yaseen, M., Wang, Y., Su, T. J. and Lu, J. R.: Surface adsorption of zwitterionic surfactants: n-alkyl phosphocholines characterized by surface tensiometry and neutron reflection. Journal of Colloid and Interface Science. 288 (2005) 361–370. PMid:15927600; DOI:10.1016/j.jcis.2005.03.024 Search in Google Scholar

30 Yaseen, M., Lu, J. R., Webster, J. R. P. and Penfold, J.: The structure of zwitterionic phosphocholine surfactant monolayers. Langmuir. 22 (2006) 5825–5832. PMid:16768514; DOI:10.1021/la053316z Search in Google Scholar

31 Yoshimura, T., Ichinokawa, T., Kaji, M. and Esumi, K.: Synthesis and surface-active properties of sulfobetaine-type zwitterionic Gemini surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 273(2006) 208–212. 10.1016/j.colsurfa.2005.08.023 Search in Google Scholar

32 Zhou, M., Zhang, Z., Xu, D., Hou, L., Zhao, W., Nie, X., Zhou, L. and Zhao, J.: Synthesis of three Gemini betaine surfactants and their surface active properties. J. Taiwan Inst. Chem. Eng. 74 (2017) 7–13. DOI:10.1016/j.jtice.2016.10.012 Search in Google Scholar

33 Zhou, M., Luo, G., Wang, X., Zhang, Z. and Wang, G.: Synthesis and Surface Active Properties of tri-[(N-alkyl-N-ethyl-N-Sodium carboxymethyl)-2-Ammonium bromide ethylene] Amines. J. Surfact. Deterg. 18 (2015) 837–844. DOI:10.1007/s11743-015-1716-4 Search in Google Scholar

34 Wang, G., Zhou, M., Ding, S. Y., Huang, Z., Zhang, Z. and Li, S. S.: Reaction principle of alcohol ether sulfonates by sulfonated slkylation method – a review. Tenside Surf. Det. 54 (2017) 5–10. DOI:10.3139/113.110472 Search in Google Scholar

35 Eastoe, J., Nave, S., Downer, A., Paul, A., Rankin, A., Tribe, K. and Penfold, J.: Adsorption of ionic surfactants at the air–solution interface. Langmuir, 16 (2000) 4511–4518. DOI:10.1021/la991564n Search in Google Scholar

36 Davis, H. T.: Factors determining emulsion type: Hydrophile–lipophile balance and beyond. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 91 (1994) 9–24. DOI:10.1016/0927-7757(94)02929-6 Search in Google Scholar

Received: 2021-01-24
Accepted: 2021-05-31
Published Online: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany