Accessible Unlicensed Requires Authentication Published by De Gruyter November 30, 2021

Assessment and Application of Modified Cationic Polyvinyl Alcohol Emulsifiers in Bitumen Emulsions

Bewertung und Anwendung von modifizierten kationischen Polyvinylalkohol-Emulgatoren in Bitumenemulsionen
Linlin Wang, Xiaoxi Wang, Runhan Hou, Qian Zhang and Yuexin Wang

Abstract

In this work, a series of emulsifiers were prepared by changing the molar ratio of polyvinyl alcohol (PVA) to the long chain quaternary ammonium salt (A0). The emulsifiers were characterised by FTIR and 1HNMR. The stability of the emulsions was checked and evaluated by determining the phase separation and by UV-Vis spectrophotometry. The emulsion stability increased with increasing emulsifier concentration, which was mainly due to the reduced droplet size and increased viscosity of the emulsions. Stability was also dependent on pH. At pH values between 5 to 3, stability was increased, but at further decreasing pH values, the emulsion became unstable or the emulsion separated. This could be mainly because the excess of positive ions compresses the double electron layer. The experimental results showed that PVA as a macromolecular matrix material has a great application potential for the emulsification process.

Zusammenfassung

In dieser Arbeit wurde eine Reihe von Emulgatoren durch Veränderung des molaren Verhältnisses von Polyvinylalkohol (PVA) zum langkettigen quaternären Ammoniumsalz (A0) hergestellt. Die Emulgatoren wurden mittels FTIR und 1HNMR charakterisiert. Die Stabilität der Emulsionen wurde durch Bestimmung der Phasentrennung und mittels UV-Vis-Spektrophotometrie überprüft und bewertet. Die Emulsionsstabilität nahm mit steigender Emulgatorkonzentration zu, was hauptsächlich auf die verringerte Tröpfchengröße und die erhöhte Viskosität der Emulsionen zurückzuführen war. Die Stabilität war auch vom pH-Wert abhängig. Bei pH-Werten zwischen 5 bis 3 wurde die Stabilität erhöht, bei weiter sinkenden pH-Werten wurde die Emulsion jedoch instabil bzw. die Emulsion trennte sich. Dies könnte vor allem daran liegen, dass der Überschuss an positiven Ionen die Doppelelektronenschicht komprimieren. Die experimentellen Ergebnisse zeigten, dass PVA als makromolekulares Matrixmaterial ein großes Anwendungspotenzial für den Emulgiervorgang besitzt.


Prof. Yuexin Wang Hebei University of Technology Guangrong Road No. 8 Hongqiao District Tianjin 300130 Tel.: 86-02260200436

References

1 Thives, L. P. and Ghisi, E.: Asphalt Mixtures Emission and Energy Consumption: A review, Renewable Sustainable Energy Rev, 72 (2017) 473–484. DOI:10.1016/j.rser.2017.01.087 Search in Google Scholar

2 Yuliestyan, A., García-Morales, M., Moreno, E., Morenob, E., Carrerab, V. and Partala, P.: Assessment of Modified Lignin Cationic Emulsifier for Bitumen Emulsions Used in Road Paving, Mater. Des, 131 (2017) 242 – 251. DOI:10.1016/j.matdes.2017.06.024 Search in Google Scholar

3 Nguyen, D. and Balsamo, V.: Emulsification of Heavy Oil in Aqueous Solutions of Poly (Vinyl Alcohol): A Method for Reducing Apparent Viscosity of Production Fluids, Energy Fuels, 27 (2013) 1736–1747. DOI:10.1021/ef3014986 Search in Google Scholar

4 Yang, Q., Ke, D., Yang, M., Hong, J., Ran, Q. and Wang, X.: Effect of Salt Concentration on the Phase Separation of Bitumen Emulsions, Colloids Surf., A, 425 (2013) 1–5. 10.1016/j.colsurfa.2013.02.041 Search in Google Scholar

5 Mercado, R. A., Salager, J. L., Sadtler, V., Marchal, P. and Choplinaet, L.: Breaking of a Cationic Amine Oil-in-Water Emulsion by pH Increasing: Rheological Monitoring to Modelize Asphalt Emulsion Rupture, Colloids Surf., A, 458 (2014) 63–68. 10.1016/j.colsurfa.2014.03.109 Search in Google Scholar

6 Hou, X., Xiao, F., Guo, R., Xiang, Q., Wang, T. and Wang, J.: Application of Spectrophotometry on Detecting Asphalt Content of Emulsified Asphalt, J. Cleaner Prod, 215 (2019) 626–633. DOI:10.1016/j.jclepro.2019.01.102 Search in Google Scholar

7 Chen, H., McClements, D. J., Chen, E., Liu, S., Li, B. and Li, Y.: In Situ Interfacial Conjugation of Chitosan with Cinnamaldehyde during Homogenization Improves the Formation and Stability of Chitosan-Stabilized Emulsions, Langmuir, 33 (2017) 14608–14617. PMid:29198120; DOI:10.1021/acs.langmuir.7b03852 Search in Google Scholar

8 García, M. C., Muñoz, J., Alfaro-Rodriguez, M. C. and Franco, J. M.: Formulation variables influencing the properties and physical stability of green multiple emulsions stabilized with a copolymer, Colloid Polym. Sci, 297 (2019) 1095–1104. DOI:10.1007/s00396-019-04529-y Search in Google Scholar

9 Alade, O. S., Sasaki, K., Sugai, Y., Ademodi, B. and Nakano, M.: Bitumen Emulsification Using a Hydrophilic Polymeric Surfactant: Performance Evaluation in the Presence of Salinity, J. Pet. Sci. Eng, 138 (2016) 66–76. DOI:10.1016/j.petrol.2015.11.031 Search in Google Scholar

10 Fei, G., Zhang, Y., Wang, X., Li, X. and Wang, H.: Effects of Continuous Phase and Crosslinking Agent on the Rheological Behaviors and Properties of Cationic Poly (Urethane-Acrylate) Emulsifier-Free Microemulsions, J. Nanosci. Nano-technol, 18 (2018) 8419–8425. PMid:30189970; DOI:10.1166/jnn.2018.16423 Search in Google Scholar

11 Smistad, G. Nyström, B. Zhu, K. Grønvolda, M. K., Røv-Johnsena, A. and Hiortha, M.: Liposomes Coated with Hydrophobically Modified Hydroxyethyl Cellulose: Influence of Hydrophobic Chain Length and Degree of Modification, Colloids Surf., B, 156 (2017) 79–86. PMid:28527360; 10.1016/j.colsurfb.2017.04.061 Search in Google Scholar

12 Kalliola, S. Repo, E. Srivastava, V. Zhao, F. Heiskanen, J. P., Sirvio?, J. A., Liimatainen, H. and Sillanpa?a?, M.: Carboxymethyl Chitosan and Its Hydrophobically Modified Derivative as pH-Switchable Emulsifiers, Langmuir, 34 (2018) 2800–2806. PMid:29406746; DOI:10.1021/acs.langmuir.7b03959 Search in Google Scholar

13 Alison, L., Demiro?rs, A. F., Tervoort, E., Teleki, A., Vermant, J. and Studart, A. R.: Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles: pH Control of Structure-Property Relations, Langmuir, 34 (2018) 6147 – 6160. PMid:29719151; DOI:10.1021/acs.langmuir.8b00622 Search in Google Scholar

14 Hou, R. Wang, X. Zhang, Q. Han, Y. Zhang, T. and Wang, Y.: Modified Chitosan as a "Multi-Subtype" Macromolecular Emulsifier for Preparing Asphalt Emulsion, Chemistry Select, 4 (2019) 9802–9806. DOI:10.1002/slct.201901739 Search in Google Scholar

15 Halamish, H. M., Trousil, J., Rak, D., Knudsen, K. D., Pavlova, E., Nyström, B., Sˇtepánek, P. and Sosnik, A.: Self-Assembly and Nanostructure of Poly (Vinyl Alcohol)-Graft-Poly (Methyl Methacrylate) Amphiphilic Nanoparticles, J. Colloid Interface Sci, 553 (2019) 512–523. PMid:31234124; DOI:10.1016/j.jcis.2019.06.047 Search in Google Scholar

16 Sona, H. A., Yoonc, K. Y., Leed, G. J., Cho, J. W., Choi, S. K., Kim, J. W., Im, K. C., Kim, H. T., Lee, K. S. and Sung, W. M.: The Potential Applications in Oil Recovery with Silica Nanoparticle and Polyvinyl Alcohol Stabilized Emulsion, J. Pet. Sci. Eng, 126 (2015)152–161. DOI:10.1016/j.petrol.2014.11.001 Search in Google Scholar

17 Liu, H., Yu, H., Yuan, X., Yuan, X., Ding, W., Li, Y. and Wang, J.: Amino-Functionalized Mesoporous PVA/SiO2 Hybrids Coated Membrane for Simultaneous Removal of Oils and Water-Soluble Contaminants from Emulsion, Chem. Eng. J, 374 (2019) 1394–1402. DOI:10.1016/j.cej.2019.05.161 Search in Google Scholar

18 Mallawarachchi, D. R., Amarasinghe, A. D. U. S. and Prashantha, M. A. B.: Suitability of Chitosan as an Emulsifier for Cationic Bitumen Emulsions and Its Behaviour as an Additive to Bitumen Emulsion, Constr. Build. Mater, 102 (2016) 1–6. 10.1016/j.conbuildmat.2015.10.111 Search in Google Scholar

19 Shokrollahi, A. and Zare, E.: Determination of acidity constants of bromophenol blue and phenol red indicators by solution scanometric method and comparison with spectrophotometric results, Journal of Molecular Liquids, 219 (2016) 1165–1171. DOI:10.1016/j.molliq.2016.01.050 Search in Google Scholar

20 Liu, J., Xie, Y. and Xu, H.: Synthesis and Properties of a Cationic Gemini Asphalt Emulsifier, J. Surfactants Deterg, 21 (2018) 455–60. DOI:10.1002/jsde.12048 Search in Google Scholar

21 Yang, Z. L., Gao, B. Y., Li, C. X., Yue, Q. Y. and Liu, B.: Synthesis and characterization of hydrophobically associating cationic polyacrylamide, Chemical engineering journal, 161 (2010) 27–33. DOI:10.1016/j.cej.2010.04.015 Search in Google Scholar

22 Tang, F., Zhu, S., Xu, G., Ma, T., Kong, L. and Kong, L.: Influence by chemical constitution of aggregates on demulsification speed of emulsified asphalt based on UV-spectral analysis, Constr. Build. Mater, 212 (2019) 102–108. 10.1016/j.conbuildmat.2019.03.309 Search in Google Scholar

23 Sheng, X., Wang, M., Xu, T. and Chen, J.: Preparation, properties and modification mechanism of polyurethane modified emulsified asphalt, Constr. Build. Mater, 189 (2018) 375–383. 10.1016/j.conbuildmat.2018.08.177 Search in Google Scholar

24 You, L., Dai, Q., You, Z., Zhou, X. and Washko, S.: Stability and rheology of asphalt-emulsion under varying acidic and alkaline levels, J. Cleaner Prod, 256 (2020) 120417. DOI:10.1016/j.jclepro.2020.120417 Search in Google Scholar

25 Pinto, I. and Buss, A.: f Potential as a Measure of Asphalt Emulsion Stability, Energy & Fuels, 34 (2020) 2143–2151. DOI:10.1021/acs.energyfuels.9b03565 Search in Google Scholar

26 Aliha, M. R. M. and Shakerb, S.: Effect of bitumen type, temperature and aging on mixed I/II fracture toughness of asphalt binders-experimental and theoretical assessment, Theor. Appl. Fract. Mech, 110 (2020) 102801. doi.org/10.1016/j.tafmec.2020.102801. DOI:10.1016/j.tafmec.2020.102801 Search in Google Scholar

27 Skartlien, R. Simon, S. and Sjöblom, J.: DPD molecular simulations of asphaltene adsorption on hydrophilic substrates: effects of polar groups and solubility, J. Dispersion Sci. Technol, 37 (2016) 866–883. DOI:10.1080/01932691.2015.1066259 Search in Google Scholar

28 Qiao, J., Cheng, S., Song, W., Jian, C., Wang, W., Zhang, D. and Xu, Y.: Probing the Effect of NaCl Concentrations on a Model Asphaltene Adsorption onto Water Droplets of Different Sizes, Energy & Fuels, 33 (2019) 3881–3890. DOI:10.1021/acs.energyfuels.8b03975 Search in Google Scholar

29 Zhao, H., Zhang, C., Qi, D., Lü, T. and Zhang, D.: One-Step synthesis of polyethylenimine-coated magnetic nanoparticles and its demulsification performance in surfactant-stabilized oil-in-water emulsion, J. Dispersion Sci. Technol, 40 (2019): 231–238. DOI:10.1080/01932691.2018.1467773 Search in Google Scholar

30 Tang, F., Xu, G., Ma, T. and Kong, L.: Study on the effect of demulsification speed of emulsified asphalt based on surface characteristics of aggregates, Materials, 11 (2018) 1488. PMid:30134575; DOI:10.3390/ma11091488 Search in Google Scholar

Appendix

The phenomena of bromophenol blue titration were shown in Fig. S1. The volumes of consumed titrant and the grafting rate of emulsifier were presented in Table S1. The results indicated that the grafting rate of emulsifier was increasing with decreasing molar ratios (PVA to A0).

Table S1

The test results of bromophenol blue titration

Emulsifier A1 A2 A3 A4 A5 A6
V1 (ml) 45.0 38.2 31.4 28.7 24.4 20.3
V2 (ml) 45.2 37.5 31.8 28.7 24.6 20.5
V3 (ml) 45.1 37.9 31.7 28.5 24.5 20.5
͞V (ml) 45.1 37.9 31.6 28.6 24.5 20.4
Grafting rate (%) 17.7 22.0 26.3 29.2 34.0 39.1
Received: 2021-03-16
Accepted: 2021-08-23
Published Online: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany