Accessible Unlicensed Requires Authentication Published by De Gruyter November 30, 2021

A Purified Alkaline and Detergent-Tolerant Lipase from Aspergillus fumigatus with Potential Application in Removal of Mustard Oil Stains from Cotton Fabric

Eine gereinigte, alkali- und waschmitteltolerante Lipase aus Aspergillus fumigatus mit Anwendungspotenzial bei der Entfernung von Senfölflecken aus Baumwollgeweben
Akshita Mehta, Aashna Gupta, Kamal Kumar Bhardwaj and Reena Gupta

Abstract

In the present study, the lipase from Aspergillus fumigatus was purified which was found to be stable to commercial detergents and oxidising agents. A purification fold of 6.96 and yield of 11.03% were achieved when the enzyme was purified using Octyl Sepharose column chromatography. In presence of various oxidizing agents, the highest activity of lipase was 15.56 U/mg with hydrogen peroxide. Among various surfactants used, the maximum activity exhibited by lipase was with Tween 80. While studying the effect of various detergents, the highest activity of 9.3 U/mg was achieved with "Vanish" detergent. Wash performance was studied with various detergents out of which "Vanish" showed highest oil removal of 79%. Lipase from Aspergillus fumigatus possessed better stability with various surfactants and oxidizing agents. The results of this study have shown that the lipase from Aspergillus fumigatus along with detergent "Vanish" (0.7%) under optimized conditions (5 μg/ml lipase, 40°C wash temperature and 40 min wash duration) improved oil removal from cotton fabric stained with mustard oil by 84%.

Zusammenfassung

In der vorliegenden Studie wurde die Lipase aus Aspergillus fumigatus gereinigt, die sich gegenüber handelsüblichen Waschmitteln und Oxidationsmitteln als stabil erwies. Eine Reinigungsfalte von 6,96 und eine Ausbeute von 11,03% wurden erreicht, als das Enzym mit Octyl-Sepharose-Säulenchromatographie gereinigt wurde. In Anwesenheit verschiedener Oxidationsmittel betrug die höchste Aktivität der Lipase 15,56 U/mg mit Wasserstoffperoxid. Unter den verschiedenen verwendeten Tensiden war die maximale Aktivität der Lipase mit Tween 80 zu verzeichnen. Bei der Untersuchung der Wirkung verschiedener Waschmittel wurde die höchste Aktivität von 9,3 U/mg mit dem Waschmittel Vanish erreicht. Die Waschleistung wurde mit verschiedenen Waschmitteln untersucht, von denen "Vanish" die beste Ölentfernung von 79% zeigte. Lipase aus Aspergillus fumigatus besaß eine bessere Stabilität mit verschiedenen Tensiden und Oxidationsmitteln. Die Ergebnisse dieser Studie haben gezeigt, dass die Lipase aus Aspergillus fumigatus zusammen mit dem Waschmittel ,,Vanish" (0,7%) unter optimierten Bedingungen (5 μg/ml Lipase, 40°C Waschtemperatur und 40 min Waschdauer) die Ölentfernung aus mit Senföl angeschmutzem Baumwollstoff um 84% verbesserte.


Prof. Dr. Reena Gupta Dean, Faculty of Life Sciences Department of Biotechnology Himachal Pradesh University Summerhill Shimla (H.P.) 171 005, INDIA

Funding statement: The financial support from DEST (Department of Environment, Science and Technology), Himachal Pradesh to Ms. Akshita Mehta in the form of Project Fellow is thankfully acknowledged. The Fellowship granted to Mr. Kamal Kumar Bhardwaj in the form of SRF from the Council of Scientific & Industrial Research under Ministry of Human Resource Development, Government of India is thankfully acknowledged.

  1. Author’s Contributions:

    Mrs. Akshita Mehta had performed the experimental work and result analysis.

    Ms. Aashna Gupta assisted in the methodology and as well as in experiments done.

    Mr. Kamal Kumar Bhardwaj helped in the writing of the manuscript.

    Dr. Reena Gupta had designed the experiments and critically revised writing and the organization of the manuscript.

  2. Conflicts of interest:

    The author(s) declare(s) that there is no conflict of interests regarding the publication of this article.

References

1 Ramos-Sanchez, L. B., Cujilema-Quitio, M. C., Julian-Ricardo, M. C., Cordova, J. and Fickers, P.: Fungal lipase production by solid-state fermentation, J. Bioprocess Biotechnol. 5 (2015) 1–9. DOI:10.4172/2155-9821.1000203 Search in Google Scholar

2 Mehta, A., Grover, C. and Gupta, R.: Purification of lipase from Aspergillus fumigatus using Octyl Sepharose column chromatography and its characterization, J. Basic Microbiol. 58 (2018) 857–866. PMid:30039877; DOI:10.1002/jobm.201800129 Search in Google Scholar

3 Pleiss, J., Fischer, M., Peiker, M., Thiele, C. and Schmid, R. D.: The Lipase Engineering Database: a navigation and analysis tool for protein families, J. Mol. Catal. B Enzym. 31 (2000) 319–321. DOI. PMid:12520012; DOI:10.1093/nar/gkg015 Search in Google Scholar

4 Nema, A., Patnala, S. H., Mandari, V., Kota, S. and Devarai, S. K.: Production and optimization of lipase using Aspergillus niger MTCC 872 by solid state fermentation, Bull. Bull Natl Res Cent 43, 82 (2019). DOI:10.1186/s42269-019-0125-7 Search in Google Scholar

5 Gutierrez-Fernandez, J., Vaquero, M. E., Prieto, A., Barriuso, J., Martinez, M. J. and Hermoso, J. A.: Crystal structures of Ophiostoma piceae sterol esterase: structural insights into activation mechanism and product release, J. Struct. Biol. 187(3) (2014) 215–222. PMid:25108239; DOI:10.1016/j.jsb.2014.07.007 Search in Google Scholar

6 Fan, Y., Wu, G., Su, F., Li, K., Xu, L., Han, X., and Yan, Y.: Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil Fuel, Catalysts 178 (2016) 172–178. DOI:10.1016/j.fuel.2016.03.071 Search in Google Scholar

7 Sharma, S. and Kanwar, S. S.: \Organic Solvent Tolerant Lipases and Applications", The Scientific World Journal, (2014) Article ID 625258, 15 pages. PMid:24672342; DOI:10.1155/2014/625258 Search in Google Scholar

8 Singh, A. K. and Mukhopadhyay, M.: Overview of fungal lipase: a review, Appl. Biochem. Biotechnol. 166 (2012) 486–520. PMid:22072143; DOI:10.1007/s12010-011-9444-3 Search in Google Scholar

9 Gopinath, S. C., Anbu, P., Lakshmipriya, T. and Hilda, A.: Strategies to characterize fungal lipases for applications in medicine and dairy industry, BioMed Res. Int. 3 (2013) 11–15. PMid:23865040; DOI:10.1155/2013/154549 Search in Google Scholar

10 Saxena, R. K., Sheoran, A., Giri, B. and Davidson, W. S.: Purification strategies for microbial lipases, J. Microbiol. Meth. 52(1) (2003) 1–18. DOI:10.1016/S0167-7012(02)00161-6 Search in Google Scholar

11 Gururaj, P., Ramalingam, S., Devi, N. G. and Gautam, P.: Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07, Braz. J. Microbiol. 47 (2016)647–657. PMid:27268114; DOI:10.1016/j.bjm.2015.04.002 Search in Google Scholar

12 Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., Heuvel, M. V. and Misset, O.: Bacterial lipases, FEMS Microbiology Reviews, 15(1) (1994) 29–63. PMid:7946464; DOI:10.1111/j.1574-6976.1994.tb00121.x Search in Google Scholar

13 Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S. and Sayadi, S. A.: newly high alkaline lipase: an ideal choice for application indetergent formulations, Lipids Health Dis. 10 (2011) 1–8. PMid:22123072; DOI:10.1186/1476-511X-10-221 Search in Google Scholar

14 Magalhaes, I. S., D’agostino, D., Hohenlohe, A. and MacColl Andrew, D. C.: The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland, Mol. Ecol. 17 (2016)4319–4336. Magalhaes, I. S., D’agostino, D., Hohenlohe, A. and MacColl Andrew, D. C. The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland, Mol. Ecol. 25(17) (2016) 4319 – 4336. DOI 10.1111/mec.13746. Search in Google Scholar

15 Perna, R. F., Tiosso, P. C, Sgobi, L. M., Vieira, A. M. S., Vieira, M. F., Tardioli, P. W., Soares, C. M. F. and Zanin, G. M.: Effects of Triton X-100 and PEG on the catalytic properties and thermal stability of lipase from Candida rugosa free and immobilized on Glyoxyl-Agarose, Open Biochem. J. 11 (2017) 66–76. DOI 10.2174/1874091X01711010066. PMid:29290831; DOI:10.2174/1874091X01711010066 Search in Google Scholar

16 Nawani, N. and Kaur, J.: Studies on lipolytic isoenzymes from a thermophilic Bacillus sp.: Production, purification and biochemical characterization, Enzyme Microb. Technol. 40(4) (2007) 881–887. DOI:10.1016/j.enzmictec.2006.07.006 Search in Google Scholar

17 Bockmuhl, D. P.: Laundry hygiene-how to get more than clean, J. Appl. Microbiol. 122 (2017) 1124–1133. PMid:28092141; DOI:10.1111/jam.13402 Search in Google Scholar

18 Hasan, F., Shah, A. A. and Hameed, A.: Industrial applications of microbial lipases, Enzyme Microb. Technol. 39(2) (2006) 235–251. DOI:10.1016/j.enzmictec.2005.10.016 Search in Google Scholar

19 Saisubramanian, N., Edwinoliver, N. G., Nandakumar, N., Kamini, N. R. and Puvanakrishnan, R.: Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach, J. Ind. Microbiol. Biotechnol. 33(8) (2006) 669–676. PMid:16491364; DOI:10.1007/s10295-006-0100-9 Search in Google Scholar

20 Mateos-Diaz, E., Amara, S., Roussel, A., Longhi, S., Cambillau, C. and Carriere, F.: Conformational changes and interfacial recognition site of lipases with surfactants and inhibitors, in: Gelb M. H. (Ed.), Enzymology at the Membrane Interface: Interfacial Enzymology and Protein-Membrane Binding, 283 (2017) 279–307. PMid:28063495; DOI:10.1016/bs.mie.2016.09.040 Search in Google Scholar

21 Sneath, P. H. A.: (1986). Bergeys manual of determinative bacteriology. (2nd ed.) Baltimore: Willims and Wilkins. Search in Google Scholar

22 Winkler, U. K. and Stuckman, M.: Glucogen hyaluronate and some other polysaccharides greatly enhance the formation of exo-lipase by Serratia marcescens, J. Biotehnol. 10 (1979)1666–1670. PMid:222724; DOI:10.1128/jb.138.3.663-670.1979 Search in Google Scholar

23 Bradford, M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254. DOI:10.1016/0003-2697(76)90527-3 Search in Google Scholar

24 Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 (1970) 680–685. PMid:5432063; DOI:10.1038/227680a0 Search in Google Scholar

25 Sukohidayat, N. H. E., Zarai, M., Baharin, B. S. and Manap, M. Y.: Purification and characterization of lipase produced by Leuconostoc mesenteroides subsp. Mesenteroides ATCC 8293 using an aqueous two-phase system (ATPS) composed of Triton X-100 and Maltitol, Molecules, (2018). PMid:30037038; DOI:10.3390/molecules23071800 Search in Google Scholar

26 Rathi, P., Saxena, R. K. and Gupta, R.: A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem. 37(2) (2001) 187–192. DOI Rathi, P., Saxena, R. K. and Gupta, R. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Process Biochem. 37 (2001) 187–192. DOI:10.1016/S0032-9592(01)00200-X Search in Google Scholar

27 Kamini, N. R., Fujii, T., Kurosu, T. and Iefuji, H.: Production, purification and characterization of an extracellular lipase from the yeast, Cryptococcus sp. S-2, Process Biochem. 36(4) (2000) 317–324. DOI:10.1016/S0032-9592(00)00228-4 Search in Google Scholar

28 Jayaprakash, A. and Ebenezer, P.: Purification and characterization of Aspergillus japonicus lipase from a pig fat production medium, J. Acad. Indus. Res. 1 (2012) 1–7. Search in Google Scholar

29 Silva, T. A., Souza, C. R. F., Oliveira, W. P. and Said, S.: Characterization and spray drying of lipase produced by the endophytic fungus Cercospora kikuchii, Braz. J. Chem. Eng. 31 (2014) 849–858. DOI:10.1590/0104-6632.20140314s00002880 Search in Google Scholar

30 Hu, J., Cai, W., Wang, C., Du, X., Lin, J. and Cai, J.: Purification and characterization of alkaline lipase production by Pseudomonas aeruginosa HFE733 and application for biodegradation in food wastewater treatment, Biotechnol. Biotechnol. Equip. 32(3) (2018), 583–590. DOI:10.1080/13102818.2018.1446764 Search in Google Scholar

31 Jurado, E., Bravo, V., Luzon, G., Fernandez-Serrano, M., Garcia-Roman, M., Altmajer-Vaz, D. and Vicaria, J. M.: Hard surface cleaning using lipases: enzyme-surfactant interactions and washing test. J. Surfact. Deterg. 10 (2007) 61–70. DOI:10.1007/s11743-006-1009-z Search in Google Scholar

32 Saisubramanian, N., Edwinoliver, N. G., Nandakumar, N., Kamini, N. R. and Puvanakrishnan, R.: Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach. J. Ind. Microbiol. Biotechnol. 33 (2006) 669–676. PMid:16491364; DOI:10.1007/s10295-006-0100-9 Search in Google Scholar

33 Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S. and Sayadi, S.: A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis. (2011) PMid:22123072; DOI:10.1186/1476-511X-10-221 Search in Google Scholar

34 Li, X. L., Zhang, W. H., Wang, Y. D., Dai, Y. J., Zhang, H. T., Wang, Y., Wang, H. K. and Lu, F. P.: A high detergent performance cold adapted lipase from Pseudomonas stutzeri PS59 suitable for detergent formulation, J. Mol. Catal. B Enzym. 102 (2014) 16–24. DOI:10.1016/j.molcatb.2014.01.006 Search in Google Scholar

35 Sajna, K. V., Sukumaran, R. K. and Jayamurthy, H.: Studies on biosurfactants from Pseudozyma sp. NII, 08165 and their potential application as laundry detergent additives, Biochem. Eng. J. 78 (2013) 85–92. DOI:10.1016/j.bej.2012.12.014 Search in Google Scholar

36 Grbavcic, S., Bezbradica, D. and Izrael-Zivkovic, L.: Production of lipase and protease from an indigenous Pseudomonas aeruginosa strain and their evaluation as detergent additives: compatibility study with detergent ingredients and washing performance, Bioresour. Technol. 102 (2011) 11226–11233. PMid:22004595; DOI:10.1016/j.biortech.2011.09.076 Search in Google Scholar

37 Horchani, H., Mosbah, H., Bensal, N., Gargouri, Y. and Sayari, A.: Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain, J. Mol. Catal. B Enzym. 56 (2009) 237–245. DOI:10.1016/j.molcatb.2008.05.011 Search in Google Scholar

38 Romdhane, I. B. B., Fendri, A., Gargouri, Y., Gargouri, A. and Belghith, H.: A novel thermoactive and alkaline lipase from Talaromyces thermophilus fungus for use in laundry detergents. Biochem. Eng. J. 53(1) (2010) 112–120. DOI:10.1016/j.bej.2010.10.002 Search in Google Scholar

Received: 2021-06-11
Accepted: 2021-08-11
Published Online: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany