Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 30, 2021

Polypropylene Glycol Modified Chitosan Composite as a Novel Adsorbent to Remove Cu(II) From Wastewater

Mit Polypropylenglykol modifizierter Chitosan-Verbundstoff als neuartiges Adsorptionsmittel zur Entfernung von Cu(II) aus Abwässern
Zheng Ji, Yansong Zhang, Huchuan Wang and Chuanrun Li


Pollution by heavy metals has become a problem that needs to be solved urgently. Therefore, the development of new efficient adsorbents to treat this pollution is of great importance. Due to their excellent adsorption properties and good biodegradability, natural polymeric materials are potential problem solvers. This study reports on the production and application of polypropylene glycol modified chitosan composites (PMC). The PMC composite material has many functional groups (–OH and –NH2). Its maximum adsorption capacity for Cu(II) is 661.8 mg g–1. The corresponding adsorption studies, including the effects of pH, contact time and amount of adsorbent, showed that the PMC composite has potential application value.


Die Verschmutzung durch Schwermetalle ist zu einem Problem geworden, das dringend gelöst werden muss. Die Entwicklung neuer effizienter Adsorptionsmittel zur Behandlung dieser Verschmutzung ist daher von großer Bedeutung. Aufgrund ihrer hervorragenden Adsorptionseigenschaften und ihrer guten biologischen Abbaubarkeit sind natürliche polymere Materialien mögliche Problemlöser. Diese Studie berichtet über die Herstellung und Anwendung von mit Polypropylenglykol modifizierten Chitosan-Verbundstoffen (PMC). Das PMC-Kompositmaterial verfügt über viele funktionelle Gruppen (–OH und –NH2). Seine maximale Adsorptionskapazität für Cu(II) liegt bei 661,8 mg g–1. Die entsprechenden Adsorptionsstudien, einschließlich der Auswirkungen des pH-Werts, der Kontaktzeit und der Menge des Adsorptionsmittels, zeigten, dass das PMC-Komposit ein großes Potential für die Anwendung besitzt.

Mr. Prof. Dr. Huchuan Wang School of Pharmacy Anhui University of Chinese Medicine Hefei Anhui 230012 P. R. China Tel.: +86 18356532101
Mr. Prof. Dr. Chuanrun Li School of Pharmacy Anhui University of Chinese Medicine Hefei Anhui 230012 P. R. China Tel.: +86 13505603930

Funding statement: This work is supported by the National Key Research and Development Program of China, No. 2019YFC1711300; Natural Science Foundation of Anhui Province, No. 1808085QH289; Key Project of Natural Science Research of Anhui Universities, No. KJ2020A0432.


1 Deng, Z. W., Yi, Z., Chen, G. C., Ma, X. M., Tang, Y. and Li, X. D.: Green tea polyphenol nanoparticle as a novel adsorbent to remove Pb2+ from wastewater, Materials Letters. 284 (2021) 128986. DOI:10.1016/j.matlet.2020.12898610.1016/j.matlet.2020.128986Search in Google Scholar

2 Mukherjee, K., Ghosh, D. and Saha, B.: Surfactant assisted enhancement of bioremediation rate for hexavalent chromium by water extract of siris (Albizia lebbeck) Sawdust, Tenside Surfactants Detergents. 51 (2014), 521–527. DOI:10.3139/113.11033810.3139/113.110338Search in Google Scholar

3 Mondal, M. H., Malik, S., Garain, A., Mandal, S. and Saha, B.: Extraction of natural surfactant saponin from soapnut (Sapindus Mukorossi) and its utilization in the remediation of hexavalent chromium from contaminated water, Tenside Surfactants Detergents. 54 (2017), 519–529. DOI:10.3139/113.11052310.3139/113.110523Search in Google Scholar

4 Ghosh, D., Saha, R., Ghosh, A., Nandi, R. and Saha, B.: A review on toxic cadmium biosorption from contaminated wastewater, Desalination and Water Treatment. 53 (2015), 413–420. DOI:10.1080/19443994.2013.84623310.1080/19443994.2013.846233Search in Google Scholar

5 Wang, K., Tao, X. R., Xu, J. Z. and Yin, N.: Novel Chitosan-MOF composite adsorbent for the removal of heavy metal ions, Chemistry Letters. 45 (2016) 1365–1368. DOI:10.1246/cl.16071810.1246/cl.160718Search in Google Scholar

6 Zheng, X. Y., Zheng, H. L., Xiong, Z. K., Zhao, R., Liu, Y. Z., Zhao, C. and Zheng, C. F.: Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions, Chemical Engineering Journal. 392 (2020) 123706. DOI:10.1016/j.cej.2019.12370610.1016/j.cej.2019.123706Search in Google Scholar

7 Ma, A., Abushaikha, A., Allen, S. J. and McKay, G.: Ion exchange homogeneous surface diffusion modelling by binary site resin for the removal of nickel ions from wastewater in fixed beds, Chemical Engineering Journal. 358 (2019) 1 –10. DOI:10.1016/j.cej.2018.09.13510.1016/j.cej.2018.09.135Search in Google Scholar

8 Qi, Y. W., Zhu, L. F., Shen, X., Sotto, A., Gao, C. J. and Shen, J. N.: Polythyleneimine-modified original positive charged nanofiltration membrane: removal of heavy metal ions and dyes, Separation and Purification Technology. 222 (2019) 117–124. DOI:10.1016/j.seppur.2019.03.08310.1016/j.seppur.2019.03.083Search in Google Scholar

9 Saha, R., Saha, I., Nandi, R., Ghosh, A., Basu, A., Ghosh, S. K. and Saha, B.: Application of Chattim tree (devil tree, Alstonia scholaris) saw dust as a bio-sorbent for removal of hexavalent chromium from contaminated water, Canadian Journal of Chemical Engineering. 91 (2013) 814 – 821. DOI:10.1002/cjce.2170310.1002/cjce.21703Search in Google Scholar

10 Ren, Y., Abbood, H. A., He, F. B., Peng, H. and Huang, K. X.: Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: Preparation, characterization, and application in heavy metal adsorption, Chemical Engineering Journal. 226 (2013) 300–311. DOI:10.1016/j.cej.2013.04.05910.1016/j.cej.2013.04.059Search in Google Scholar

11 Huang, L. J., Huang, W., Shen, R. J. and Shuai, Q.: Chitosan/thiol functionalized metal-organic framework composite for the simultaneous determination of lead and cadmium ions in food samples, Food Chemistry. 330 (2020) 127212. PMid:32526650; DOI:10.1016/j.foodchem.2020.12721210.1016/j.foodchem.2020.127212Search in Google Scholar

12 Wang, H. C., Yang, J. J., Fang, C. C., Li, C. R., Zhong, G. C. and Peng, C. J.: Synthesis and characterization of modified sodium carboxymethyl cellulose and polyethylene glycol ester new copolymer as scale inhibitor, Desalination and Water Treatment. 191 (2020) 285–291. DOI:10.5004/dwt.2020.2570510.5004/dwt.2020.25705Search in Google Scholar

13 Arya, V. and Philip, L.: Adsorption of pharmaceuticals in water using Fe3O4 coated polymer clay composite, Microporous and Mesoporous Materials. 232 (2016) 273–280. DOI:10.1016/j.micromeso.2016.06.03310.1016/j.micromeso.2016.06.033Search in Google Scholar

14 Mu, R. H., Liu, B., Chen, X., Wang, N. and Yang, J.: Adsorption of Cu(II) and Co(II) from aqueous solution using lignosulfonate/chitosan adsorbent, International Journal of Biological Macromolecules. 163 (2020) 120–127. PMid:32615221; DOI:10.1016/j.ijbiomac.2020.06.26010.1016/j.ijbiomac.2020.06.260Search in Google Scholar

15 Chai, Z. H., Li, C. L., Zhu, Y., Song, X. R., Chen, M. Y., Yang, Y. L., Chen, D., Liang, X. Q. and Wu, J. H.: Arginine-modified magnetic chitosan: Preparation, characterization and adsorption of gallic acid in sugar solution, International Journal of Biological Macromolecules. 165 (2020) 506–516. PMid:32991889; DOI:10.1016/j.ijbiomac.2020.09.14110.1016/j.ijbiomac.2020.09.141Search in Google Scholar

16 Manzoor, K., Ahmad, M., Ahmad, S. and Ikram, S.: Synthesis, characterization, kinetics, and thermodynamics of EDTA-modified chitosan-carboxymethyl cellulose as Cu(II) ion adsorbent, ACS Omega. 4 (2019) 17425–17437. PMid:31656915; DOI:10.1021/acsomega.9b0221410.1021/acsomega.9b02214Search in Google Scholar

Received: 2021-07-15
Accepted: 2021-08-10
Published Online: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany