Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 17, 2022

Research progress in the removal of heavy metals by modified chitosan

Zheng Ji, Yansong Zhang, Huchuan Wang and Chuanrun Li

Abstract

Chitosan and its modifiers have been widely studied for their good biocompatibility and excellent adsorption properties for heavy metal ions. The synthesis and application of modified chitosan, the effects of process variables (such as pH, amount of adsorbent, temperature, contact time, etc.), adsorption kinetics, thermodynamics and the adsorption mechanism on the removal of heavy metal ions are reviewed. The purpose is to provide the latest information about chitosan as adsorbent and to promote the synthesis of modified chitosan and its application in the removal of heavy metals.


Corresponding authors: Huchuan Wang and Chuanrun Li, Department of Medicinal Chemistry, School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China, E-mail: (Huchuan Wang), (Chuanrun Li)

Funding source: National Key Research and Development Program

Award Identifier / Grant number: 2019YFC1711300

Funding source: Natural Science Foundation of Anhui Province

Award Identifier / Grant number: 1808085QH289

Funding source: Natural Science Research of Anhui Universities

Award Identifier / Grant number: KJ2020A0432

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work is supported by the National Key Research and Development Program of China, No. 2019YFC1711300; Natural Science Foundation of Anhui Province, No. 1808085QH289; Key Project of Natural Science Research of Anhui Universities, No. KJ2020A0432; Quality Project of Higher Education in Anhui Province, No. 2020xfxm35.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., Gholami, Z., Amouzgar, P. Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr. Polym. 2014, 113, 115–130; https://doi.org/10.1016/j.carbpol.2014.07.007.Search in Google Scholar PubMed

2. Xiong, Y. Y., Li, J. Q., Gong, L. L., Feng, X. F., Meng, L. N., Zhang, L., Meng, P. P., Luo, M. B., Luo, F. Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution. J. Solid State Chem. 2017, 246, 16–22; https://doi.org/10.1016/j.jssc.2016.10.018.Search in Google Scholar

3. Tripathi, N., Choppala, G., Singh, R. S., Srivastava, P., Seshadri, B. Sorption kinetics of zinc and nickel on modified chitosan. Environ. Monit. Assess. 2016, 188, 507; https://doi.org/10.1007/s10661-016-5499-5 .Search in Google Scholar PubMed

4. Basu, A., Saha, D., Saha, R., Ghosh, T., Saha, B. A review on sources, toxicity and remediation technologies for removing arsenic from drinking water. Res. Chem. Intermed. 2014, 40, 447–485; https://doi.org/10.1007/s11164-012-1000-4.Search in Google Scholar

5. Mondal, M. H., Malik, S., Garain, A., Mandal, S., Saha, B. Extraction of natural surfactant saponin from soapnut (sapindus mukorossi) and its utilization in the remediation of hexavalent chromium from contaminated water. Tenside Surfactants Deterg. 2017, 54, 519–529; https://doi.org/10.3139/113.110523.Search in Google Scholar

6. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Ghosh, T., Mukherjee, K., Bhattacharyya, S. S., Saha, B. Kinetic studies of glutamic acid oxidation by hexavalent chromium in presence of surfactants. Tenside Surfactants Deterg. 2012, 49, 481–487; https://doi.org/10.3139/113.110220.Search in Google Scholar

7. Basu, A., Ghosh, S. K., Saha, R., Nandi, R., Ghosh, T., Saha, B. Effect of some non functional surfactants and electrolytes on the hexavalent chromium reduction by glycerol: a mechanistic study. Tenside Surfactants Deterg. 2011, 48, 453–458; https://doi.org/10.3139/113.110152.Search in Google Scholar

8. Saha, R., Mukherjee, K., Saha, I., Ghosh, A., Ghosh, S. K., Saha, B. Removal of hexavalent chromium from water by adsorption on mosambi (Citrus limetta) peel. Res. Chem. Intermed. 2013, 39, 2245–2257; https://doi.org/10.1007/s11164-012-0754-z.Search in Google Scholar

9. Saha, R., Saha, B. Removal of hexavalent chromium from contaminated water by adsorption using mango leaves (Mangifera indica). Desalination Water Treat. 2014, 52, 1928–1936; https://doi.org/10.1080/19443994.2013.804458.Search in Google Scholar

10. Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J. S., Liu, C. W., López, D., Armienta, M. A., Guilherme, L. R. G., Cuevas, A. G., Cornejo, L., Cumbal, L., Toujaguez, R. One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci. Total Environ. 2012, 429, 2–35; https://doi.org/10.1016/j.scitotenv.2011.06.024.Search in Google Scholar PubMed

11. Rahman, Z., Singh, V. P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ. Monit. Assess. 2019, 191, 419; https://doi.org/10.1007/s10661-019-7528-7.Search in Google Scholar PubMed

12. Wani, A. L., Ara, A., Usmani, J. A. Lead toxicity: a review. Interdiscipl. Toxicol. 2015, 8, 55–64; https://doi.org/10.1515/intox-2015-0009.Search in Google Scholar PubMed PubMed Central

13. Le, V. T., Dao, M. U., Le, H. S., Tran, D. L., Doan, V. D., Nguyen, H. T. Adsorption of Ni(II) ions by magnetic activated carbon/chitosan beads prepared from spent coffee grounds, shrimp shells and green tea extract. Environ. Technol. 2020, 41, 2817–2832; https://doi.org/10.1080/09593330.2019.1584250.Search in Google Scholar PubMed

14. Hussain, M. S., Musharraf, S. G., Bhanger, M. I., Malik, M. I. Salicylaldehyde derivative of nano-chitosan as an efficient adsorbent for lead(II), copper(II), and cadmium(II) ions. Int. J. Biol. Macromol. 2020, 147, 643–652; https://doi.org/10.1016/j.ijbiomac.2020.01.091.Search in Google Scholar PubMed

15. Li, X. W., Zhang, Q. W., Yang, B. Co-precipitation with CaCO3 to remove heavy metals and significantly reduce the moisture content of filter residue. Chemosphere 2020, 239, 124660; https://doi.org/10.1016/j.chemosphere.2019.124660.Search in Google Scholar PubMed

16. Feng, Y., Yang, S., Xia, L., Wang, Z., Suo, N., Chen, H., Long, Y., Zhou, B., Yu, Y. In-situ ion exchange electrocatalysis biological coupling (i-IEEBC) for simultaneously enhanced degradation of organic pollutants and heavy metals in electroplating wastewater. J. Hazard Mater. 2019, 364, 562–570; https://doi.org/10.1016/j.jhazmat.2018.10.068.Search in Google Scholar PubMed

17. Ates, N., Uzal, N. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration. Environ. Sci. Pollut. Control Ser. 2018, 25, 22259–22272; https://doi.org/10.1007/s11356-018-2345-z.Search in Google Scholar PubMed

18. Su, X., Kushima, A., Halliday, C., Zhou, J., Li, J., Hatton, T. A. Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nat. Commun. 2018, 9, 4701; https://doi.org/10.1038/s41467-018-07159-0.Search in Google Scholar PubMed PubMed Central

19. Lertlapwasin, R., Bhawawet, N., Imyim, A., Fuangswasdi, S. Ionic liquid extraction of heavy metal ions by 2-aminothiophenol in 1-butyl-3-methylimidazolium hexafluorophosphate and their association constants. Separ. Purif. Technol. 2010, 72, 70–76; https://doi.org/10.1016/j.seppur.2010.01.004.Search in Google Scholar

20. Guo, J., Kang, Y., Feng, Y. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron. J. Environ. Manag. 2017, 203, 278–285; https://doi.org/10.1016/j.jenvman.2017.07.075.Search in Google Scholar PubMed

21. Liang, W., Li, M., Jiang, S., Ali, A., Zhang, Z., Li, R. Polyamine-co-2, 6-diaminopyridine covalently bonded on chitosan for the adsorptive removal of Hg(II) ions from aqueous solution. Int. J. Biol. Macromol. 2019, 130, 853–862; https://doi.org/10.1016/j.ijbiomac.2019.03.007.Search in Google Scholar PubMed

22. Wang X, H., Li, X., Peng L, L., Han, S. Q., Hao, C., Jiang, C. L., Wang, H. L., Fan, X. B. Effective removal of heavy metals from water using porous lignin-based adsorbent. Chemosphere. 2021, 279, 130504; https://doi.org/10.1016/j.chemosphere.2021.130504.Search in Google Scholar PubMed

23. Marković, S., Stanković, A., Lopičić, Z., Lazarević, S., Stojanović, M., Uskoković, D. Application of raw peach shell particles for removal of methylene blue. J. Environ. Chem. Eng. 2015, 3, 716–724; https://doi.org/10.1016/j.jece.2015.04.002.Search in Google Scholar

24. Ge, H., Hua, T. Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption. Carbohydr. Polym. 2016, 153, 246–252; https://doi.org/10.1016/j.carbpol.2016.07.110.Search in Google Scholar PubMed

25. Zheng, X. Y., Zheng, H. L., Xiong, Z. K., Zhao, R., Liu, Y. Z., Zhao, C., Zheng, C. F. Novel anionic polyacrylamide-modify-chitosan magnetic composite nanoparticles with excellent adsorption capacity for cationic dyes and pH-independent adsorption capability for metal ions. Chem. Eng. J. 2020, 392, 123706; https://doi.org/10.1016/j.cej.2019.123706.Search in Google Scholar

26. Zia, Q., Tabassum, M., Meng, J., Xin, Z., Gong, H., Li, J. Polydopamine-assisted grafting of chitosan on porous poly (L-lactic acid) electrospun membranes for adsorption of heavy metal ions. Int. J. Biol. Macromol. 2021, 167, 1479–1490; https://doi.org/10.1016/j.ijbiomac.2020.11.101.Search in Google Scholar PubMed

27. Pietrelli, L., Francolini, I., Piozzi, A., Sighicelli, M., Silvestro, I., Vocciante, M. Chromium(III) removal from wastewater by chitosan flakes. Appl. Sci. 2020, 10, 1925; https://doi.org/10.3390/app10061925.Search in Google Scholar

28. Ren, L., Xu, J., Zhang, Y., Zhou, J., Chen, D., Chang, Z. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. Int. J. Biol. Macromol. 2019, 135, 898–906; https://doi.org/10.1016/j.ijbiomac.2019.06.007.Search in Google Scholar PubMed

29. Zhao, Y. L., Kang, S. C., Qin, L., Wang, W., Zhang, T. T., Song, S. X., Komarneni, S. Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chem. Eng. J. 2020, 379, 122322; https://doi.org/10.1016/j.cej.2019.122322.Search in Google Scholar

30. Qin, L., Zhao, Y. L., Wang, L., Zhang, L. B., Kang, S. C., Wang, W., Zhang, T. T., Song, S. X. Preparation of ion-imprinted montmorillonite nanosheets/chitosan gel beads for selective recovery of Cu(II) from wastewater. Chemosphere 2020, 252, 126560; https://doi.org/10.1016/j.chemosphere.2020.126560.Search in Google Scholar PubMed

31. Rajamani, M., Rajendrakumar, K. Chitosan-boehmite desiccant composite as a promising adsorbent towards heavy metal removal. J. Environ. Manag. 2019, 244, 257–264; https://doi.org/10.1016/j.jenvman.2019.05.056.Search in Google Scholar PubMed

32. Taguba, M. A. M., Ong, D. C., Ensano, B. M. B., Kan, C. C., Grisdanurak, N., Yee, J. J., de Luna, M. D. G. Nonlinear isotherm and kinetic modeling of Cu(II) and Pb(II) uptake from water by MnFe2O4/chitosan nanoadsorbents. Water 2021, 13, 1662; https://doi.org/10.3390/w13121662.Search in Google Scholar

33. Huang, G. J., Chen, Z. G., Li, M. D., Yang, B., Xin, M. L., Li, S. P., Yin, Z. J. Surface functional modification of graphene and graphene oxide. Hua Hsueh Hsueh Pao 2016, 74, 789–799; https://doi.org/10.6023/A16070360.Search in Google Scholar

34. Zhang, D., Li, N., Cao, S., Liu, X., Qiao, M. W., Zhang, P. A., Zhao, Q. Y., Song, L. J., Huang, X. Q. A layered chitosan/graphene oxide sponge as reusable adsorbent for removal of heavy metal ions. Chem. Res. Chin. Univ. 2019, 35, 463–470; https://doi.org/10.1007/s40242-019-8369-1.Search in Google Scholar

35. Dev, V. V., Baburaj, G., Antony, S., Arun, V., Krishnan, K. A. Zwitterion-chitosan bed for the simultaneous immobilization of Zn(II), Cd(II), Pb(II) and Cu(II) from multi-metal aqueous systems. J. Clean. Prod. 2020, 255, 120309; https://doi.org/10.1016/j.jclepro.2020.120309.Search in Google Scholar

36. Dai, X., Zhang, X. H., Wang, Z. X., Xu, S., Zhang, S. X., Cao, M., Jiang, X. D. The effect of surface modification of PMMA/chitosan composites on improving adsorption properties for chelating Pb2+. J. Polym. Eng. 2019, 39, 628–635; https://doi.org/10.1515/polyeng-2019-0005.Search in Google Scholar

37. Kuczajowska-Zadrozna, M., Filipkowska, U., Jozwiak, T. Adsorption of Cu (II) and Cd (II) from aqueous solutions by chitosan immobilized in alginate beads. J. Environ. Chem. Eng. 2020, 8, 103878; https://doi.org/10.1016/j.jece.2020.103878.Search in Google Scholar

38. Abdelrahman, E. A., Abdel-Salam, E. T., El Rayes, S. M., Mohamed, N. S. Facile synthesis of graft copolymers of maltodextrin and chitosan with 2-acrylamido-2-methyl-1-propanesulfonic acid for efficient removal of Ni(II), Fe(III), and Cd(II) ions from aqueous media. J. Polym. Res. 2019, 26, 251; https://doi.org/10.1007/s10965-019-1920-4.Search in Google Scholar

39. Zhuang, S. T., Zhu, K. K., Wang, J. L. Fibrous chitosan/cellulose composite as an efficient adsorbent for Co(II) removal. J. Clean. Prod. 2021, 285, 124911; https://doi.org/10.1016/j.jclepro.2020.124911.Search in Google Scholar

40. Munim, S. A., Saddique, M. T., Raza, Z. A., Majeed, M. I. Fabrication of cellulose-mediated chitosan adsorbent beads and their surface chemical characterization. Polym. Bull. 2020, 77, 183–196; https://doi.org/10.1007/s00289-019-02711-4.Search in Google Scholar

41. Liu, Y., Ma, C. J., Zhang, X. B., Ngo, H. H., Guo, W. S., Zhang, M. D., Zhang, D. Role of structural characteristics of MoS2 nanosheets on Pb2+ removal in aqueous solution. Environ. Technol. Innovat. 2021, 22, 101385; https://doi.org/10.1016/j.eti.2021.101385.Search in Google Scholar

42. Khah, M. H., Jamshidi, P., Shemirani, F. Applying Fe3O4-MoS2-chitosan nanocomposite to preconcentrate heavy metals from dairy products prior quantifying by FAAS. Res. Chem. Intermed. 2021, 47, 3867–3881; https://doi.org/10.1007/s11164-021-04480-0.Search in Google Scholar

43. Salehi, S., Alijani, S., Anbia, M. Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal. Int. J. Biol. Macromol. 2020, 164, 105–120; https://doi.org/10.1016/j.ijbiomac.2020.07.055.Search in Google Scholar PubMed

44. Parastar, M., Sheshmani, S., Shokrollahzadeh, S. Cross-linked chitosan into graphene oxide-iron(III) oxide hydroxide as nano-biosorbent for Pd(II) and Cd(II) removal. Int. J. Biol. Macromol. 2021, 166, 229–237; https://doi.org/10.1016/j.ijbiomac.2020.10.160.Search in Google Scholar PubMed

45. Alaswad, S. O., Lakshmi, K. B., Sudha, P. N., Gomathi, T., Arunachalam, P. Toxic heavy metal cadmium removal using chitosan and polypropylene based fiber composite. Int. J. Biol. Macromol. 2020, 164, 1809–1824; https://doi.org/10.1016/j.ijbiomac.2020.07.252.Search in Google Scholar PubMed

46. Liu, Y., Hu, L. S., Tan, B., Li, J. R., Gao, X. H., He, Y. N., Du, X. F., Zhang, W., Wang, W. L. Adsorption behavior of heavy metal ions from aqueous solution onto composite dextran-chitosan macromolecule resin adsorbent. Int. J. Biol. Macromol. 2019, 141, 738–746; https://doi.org/10.1016/j.ijbiomac.2019.09.044.Search in Google Scholar PubMed

47. Yang, K., Wang, G., Liu, F. L., Wang, X., Chen, X. M. Removal of multiple heavy metal ions using a macromolecule chelating flocculant xanthated chitosan. Water Sci. Technol. 2019, 79, 2289–2297; https://doi.org/10.2166/wst.2019.230.Search in Google Scholar PubMed

48. Zheng, W. T., Kuchukulla, R. R., Xu, X. N., Zhang, D. D., Zhou, L. H., Zeng, Q. L. Study on synthesis of comb-shaped chitosan-graft-polyethylenimine dithiocarbamate material and its adsorption to heavy metal ions. J. Polym. Environ. 2022, 30, 653–665; https://doi.org/10.1007/s10924-021-02225-z.Search in Google Scholar

49. Zhang, R. N., Liu, Y. N., He, M. R., Su, Y. L., Zhao, X. T., Elimelech, M., Jiang, Z. Y. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924; https://doi.org/10.1039/c5cs00579e.Search in Google Scholar PubMed

50. Sangeetha, K., Vinodhini, P. A., Sudha, P. N., Faleh, A. A., Sukumaran, A. Novel chitosan based thin sheet nanofiltration membrane for rejection of heavy metal chromium. Int. J. Biol. Macromol. 2019, 132, 939–953; https://doi.org/10.1016/j.ijbiomac.2019.03.244.Search in Google Scholar PubMed

51. Sun, J. Y., Zhao, X., Illeperuma, W. R. K., Chaudhuri, O., Oh, K. H., Mooney, D. J., Vlassak, J. J., Suo, Z. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136; https://doi.org/10.1038/nature11409.Search in Google Scholar PubMed PubMed Central

52. Lin, Z. K., Yang, Y. R., Liang, Z. Z., Zeng, L., Zhang, A. P. Preparation of chitosan/calcium alginate/bentonite composite hydrogel and its heavy metal ions adsorption properties. Polymers 2021, 13, 1891; https://doi.org/10.3390/polym13111891.Search in Google Scholar PubMed PubMed Central

53. Yang, J., Li, M., Wang, Y. F., Wu, H., Ji, N., Dai, L., Li, Y., Xiong, L., Shi, R., Sun, Q. J. High-strength physically multi-cross-linked chitosan hydrogels and aerogels for removing heavy-metal ions. J. Agric. Food Chem. 2019, 67, 13648–13657; https://doi.org/10.1021/acs.jafc.9b05063.Search in Google Scholar PubMed

54. Li, D. W., Tian, X. J., Wang, Z. Q., Guan, Z., Li, X. Q., Qiao, H., Ke, H. Z., Luo, L., Wei, Q. F. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020, 383, 123127; https://doi.org/10.1016/j.cej.2019.123127.Search in Google Scholar

55. Salehi, N., Moghimi, A., Shahbazi, H. Preparation of cross-linked magnetic chitosan with methionine-glutaraldehyde for removal of heavy metals from aqueous solutions. Int. J. Environ. Anal. Chem. 2020. https://doi.org/10.1080/03067319.2020.1753718.Search in Google Scholar

56. Shahraki, S., Delarami, H. S., Khosravi, F., Nejat, R. Improving the adsorption potential of chitosan for heavy metal ions using aromatic ring-rich derivatives. J. Colloid Interface Sci. 2020, 576, 79–89; https://doi.org/10.1016/j.jcis.2020.05.006.Search in Google Scholar PubMed

57. Surgutskaia, N. S., Di Martino, A., Zednik, J., Ozaltin, K., Lovecka, L., Bergerova, E. D., Kimmer, D., Svoboda, J., Sedlarik, V. Efficient Cu2+, Pb2+ and Ni2+ ion removal from wastewater using electrospun DTPA-modified chitosan/polyethylene oxide nanofibers. Separ. Purif. Technol. 2020, 247, 116914; https://doi.org/10.1016/j.seppur.2020.116914.Search in Google Scholar

58. Manzoor, K., Ahmad, M., Ahmad, S., Ikram, S. Synthesis, characterization, kinetics, and thermodynamics of EDTA-modified chitosan-carboxymethyl cellulose as Cu(II) ion adsorbent. ACS Omega 2019, 4, 17425–17437; https://doi.org/10.1021/acsomega.9b02214.Search in Google Scholar PubMed PubMed Central

59. Deng, J. Q., Liu, Y. Q., Liu, S. B., Zeng, G. M., Tan, X. F., Huang, B. Y., Tang, X. J., Wang, S. F., Hua, Q., Yan, Z. L. Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. J. Colloid Interface Sci. 2017, 506, 355–364; https://doi.org/10.1016/j.jcis.2017.07.069.Search in Google Scholar PubMed

60. Ali, S., Sirry, S. M., Hassanin, H. A. Removal and characterisation of Pb(II) ions by xylenol orange-loaded chitosan: equilibrium studies. Int. J. Environ. Anal. Chem. 2020. https://doi.org/10.1080/03067319.2020.1807970.Search in Google Scholar

61. Li, L. B., Ma, J. Study on adsorption of Cu2+ by GO/modified magnetic chitosan composite. N. Chem. Mater. 2019, 47, 261–264.Search in Google Scholar

62. He, Y. Y., Wu, P., Xiao, W., Li, G. Y., Yi, J. C., He, Y. F., Chen, C. M., Ding, P., Duan, Y. Y. Efficient removal of Pb(II) from aqueous solution by a novel ion imprinted magnetic biosorbent: adsorption kinetics and mechanisms. PLoS One 2019, 14, e0213377; https://doi.org/10.1371/journal.pone.0213377.Search in Google Scholar PubMed PubMed Central

63. Ren, Y., Abbood, H. A., He, F. B., Peng, H., Huang, K. X. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem. Eng. J. 2013, 226, 300–311; https://doi.org/10.1016/j.cej.2013.04.059.Search in Google Scholar

64. Abdelrahman, E. A., Subaihi, A. Application of geopolymers modified with chitosan as novel composites for efficient removal of Hg(II), Cd(II), and Pb(II) ions from aqueous media. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2440–2463; https://doi.org/10.1007/s10904-019-01380-0.Search in Google Scholar

65. He, Y., Gou, S. H., Zhou, L. H., Tang, L., Liu, T., Liu, L., Duan, M. Amidoxime-functionalized polyacrylamide-modified chitosan containing imidazoline groups for effective removal of Cu2+ and Ni2+. Carbohydr. Polym. 2021, 252, 117160; https://doi.org/10.1016/j.carbpol.2020.117160.Search in Google Scholar PubMed

66. Jiang, Y. L., Abukhadra, M. R., Refay, N. M., Sharaf, M. F., El-Meligy, M. A., Awwad, E. M. Synthesis of chitosan/MCM-48 and β-cyclodextrin/MCM-48 composites as bio-adsorbents for environmental removal of Cd2+ ions; kinetic and equilibrium studies. React. Funct. Polym. 2020, 154, 104675; https://doi.org/10.1016/j.reactfunctpolym.2020.104675.Search in Google Scholar

67. Moja, T. N., Bunekar, N., Mishra, S. B., Tsai, T. Y., Hwang, S. S., Mishra, A. K. Melt processing of polypropylene-grafted-maleic anhydride/Chitosan polymer blend functionalized with montmorillonite for the removal of lead ions from aqueous solutions. Sci. Rep. 2020, 10, 217; https://doi.org/10.1038/s41598-019-57079-2.Search in Google Scholar PubMed PubMed Central

68. Al-Abbad, E., Alakhras, F., Anastopoulos, I., Das, D., AL-Arfaj, A., Ouerfelli, N., Hosseini-Bandegharaei, A. Chitosan-based materials for the removal of nickel ions from aqueous solutions. Russ. J. Phys. Chem. 2020, 94, 748–755; https://doi.org/10.1134/S0036024420040032.Search in Google Scholar

69. Bisiriyu, I. O., Meijboom, R. Adsorption of Cu(II) ions from aqueous solution using pyridine-2,6-dicarboxylic acid crosslinked chitosan as a green biopolymer adsorbent. Int. J. Biol. Macromol. 2020, 165, 2484–2493; https://doi.org/10.1016/j.ijbiomac.2020.10.150.Search in Google Scholar PubMed

70. Anush, S. M., Chandan, H. R., Gayathri, B. H., Asma, Manju, N., Vishalakshi, B., Kalluraya, B. Graphene oxide functionalized chitosan-magnetite nanocomposite for removal of Cu(II) and Cr(VI) from waste water. Int. J. Biol. Macromol. 2020, 164, 4391–4402; https://doi.org/10.1016/j.ijbiomac.2020.09.059.Search in Google Scholar PubMed

71. Tong, K. S., Kassim, M. J., Azraa, A. Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: equilibrium, kinetics, and thermodynamic studies. Chem. Eng. J. 2011, 170, 145–153; https://doi.org/10.1016/j.cej.2011.03.044.Search in Google Scholar

72. Zhang, L., Zeng, Y. X., Cheng, Z. J. Removal of heavy metal ions using chitosan and modified chitosan: a review. J. Mol. Liq. 2016, 214, 175–191; https://doi.org/10.1016/j.molliq.2015.12.013.Search in Google Scholar

73. Khalil, T. E., Elhusseiny, A. F., El-dissouky, A., Ibrahim, N. M. Functionalized chitosan nanocomposites for removal of toxic Cr(VI) from. aqueous solution. React. Funct. Polym. 2020, 146, 104407; https://doi.org/10.1016/j.reactfunctpolym.2019.104407.Search in Google Scholar

74. Cazetta, A. L., Pezoti, O., Bedin, K. C., Silva, T. L., Paesano, A., Asefa, T., Almeida, V. C. Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustain. Chem. Eng. 2016, 4, 1058–1068; https://doi.org/10.1021/acssuschemeng.5b01141.Search in Google Scholar

75. Zidan, T. A., Abdelhamid, A. E., Zaki, E. G. N-Aminorhodanine modified chitosan hydrogel for antibacterial and copper ions removal from aqueous solutions. Int. J. Biol. Macromol. 2020, 158, 32–42; https://doi.org/10.1016/j.ijbiomac.2020.04.180.Search in Google Scholar PubMed

76. Zeng, H. H., Wang, L., Zhang, D., Wang, F., Sharma, V. K., Wang, C. Y. Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution. J. Colloid Interface Sci. 2019, 554, 479–487; https://doi.org/10.1016/j.jcis.2019.07.029.Search in Google Scholar PubMed

77. Li, S. S., Wang, X. L., An, Q. D., Xiao, Z. Y., Zhai, S. R., Cui, L., Li, Z. C. Upon designing carboxyl methylcellulose and chitosan-derived nanostructured sorbents for efficient removal of Cd(II) and Cr(VI) from water. Int. J. Biol. Macromol. 2020, 143, 640–650; https://doi.org/10.1016/j.ijbiomac.2019.12.053.Search in Google Scholar PubMed

78. Wang, Y., Zhou, R. S., Wang, C. Z., Zhou, G. Z., Hua, C. Y., Cao, Y. Y., Song, Z. Z. Novel environmental-friendly nano-composite magnetic attapulgite functionalized by chitosan and EDTA for cadmium (II) removal. J. Alloys Compd. 2020, 817, 153286; https://doi.org/10.1016/j.jallcom.2019.153286.Search in Google Scholar

79. Usman, M., Ahmed, A., Yu, B., Wang, S., Shen, Y., Cong, H. Simultaneous adsorption of heavy metals and organic dyes by β-Cyclodextrin-Chitosan based cross-linked adsorbent. Carbohydr. Polym. 2021, 255, 117486; https://doi.org/10.1016/j.carbpol.2020.117486.Search in Google Scholar PubMed

80. Zheng, L. W., Gao, Y. C., Du, J. H., Zhang, W., Huang, Y. J., Wang, L. L., Zhao, Q. Q., Pan, X. L. A novel, recyclable magnetic biochar modified by chitosan-EDTA for the effective removal of Pb(II) from aqueous solution. RSC Adv. 2020, 10, 40196–40205; https://doi.org/10.1039/d0ra07499c.Search in Google Scholar PubMed PubMed Central

81. Yang, W. X., Cheng, M. J., Han, Y., Luo, X. L., Li, C. H., Tang, W. Z., Yue, T. L., Li, Z. H. Heavy metal ions’ poisoning behavior-inspired etched UiO-66/CTS aerogel for Pb(II) and Cd(II) removal from aqueous and apple juice. J. Hazard Mater. 2021, 401, 123318; https://doi.org/10.1016/j.jhazmat.2020.123318.Search in Google Scholar PubMed

82. Zhang, H., Xiao, R., Li, R. H., Ali, A., Chen, A. L., Zhang, Z. Q. Enhanced aqueous Cr(VI) removal using chitosan-modified magnetic biochars derived from bamboo residues. Chemosphere 2020, 261, 127694; https://doi.org/10.1016/j.chemosphere.2020.127694.Search in Google Scholar PubMed

83. Lei, C., Wang, C. W., Chen, W. Q., He, M. H., Huang, B. B. Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium: removal efficacy and mechanisms. Sci. Total Environ. 2020, 733, 139316; https://doi.org/10.1016/j.scitotenv.2020.139316.Search in Google Scholar PubMed

84. Wang, K., Tao, X. R., Xu, J. Z., Yin, N. Novel chitosan-MOF composite adsorbent for the removal of heavy metal ions. Chem. Lett. 2016, 45, 1365–1368; https://doi.org/10.1246/cl.160718.Search in Google Scholar

85. Abouel-Reash, Y. G. Magnetic chitosan modified with cysteine-glutaraldehyde as adsorbent for removal of heavy metals from water. J. Environ. Chem. Eng. 2016, 4, 3835–3847; https://doi.org/10.1016/j.jece.2016.08.014.Search in Google Scholar

86. Zia, Q., Tabassum, M., Meng, J. M., Xin, Z. Y., Gong, H., Li, J. S. Polydopamine-assisted grafting of chitosan on porous poly (L-lactic acid) electrospun membranes for adsorption of heavy metal ions. Int. J. Biol. Macromol. 2021, 167, 1479–1490; https://doi.org/10.1016/j.ijbiomac.2020.11.101.Search in Google Scholar PubMed

87. Hosain, A. N. A., El Nemr, A., El Sikaily, A., Mahmoud, M. E., Amira, M. F. Surface modifications of nanochitosan coated magnetic nanoparticles and their applications in Pb(II), Cu(II) and Cd(II) removal. J. Environ. Chem. Eng. 2020, 8, 104316; https://doi.org/10.1016/j.jece.2020.104316.Search in Google Scholar

88. Zhang, M., Zhang, Z., Peng, Y. Z., Feng, L., Li, X. H., Zhao, C. L., Sarfaraz, K. Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range. Int. J. Biol. Macromol. 2020, 156, 289–301; https://doi.org/10.1016/j.ijbiomac.2020.04.020.Search in Google Scholar PubMed

89. Du, X. Y., Kishima, C., Zhang, H. X., Miyamoto, N., Kano, N. Removal of Chromium(VI) by chitosan beads modified with sodium dodecyl sulfate(SDS). Appl. Sci. 2020, 10, 4745; https://doi.org/10.3390/app10144745.Search in Google Scholar

90. Karamipour, A., Parsi, P. K., Zahedi, P., Moosavian, S. M. A. Using Fe3O4-coated nanofibers based on cellulose acetate/chitosan for adsorption of Cr(VI), Ni(II) and phenol from aqueous solutions. Int. J. Biol. Macromol. 2020, 154, 1132–1139; https://doi.org/10.1016/j.ijbiomac.2019.11.058.Search in Google Scholar PubMed

91. Mone, M., Lambropoulou, D. A., Bikiaris, D. N., Kyzas, G. Chitosan grafted with biobased 5-Hydroxymethyl-Furfural as adsorbent for copper and cadmium ions removal. Polymers 2020, 12, 1173; https://doi.org/10.3390/polym12051173.Search in Google Scholar PubMed PubMed Central

92. Bahador, F., Foroutan, R., Esmaeili, H., Ramavandi, B. Enhancement of the chromium removal behavior of moringa oleifera activated carbon by chitosan and iron oxide nanoparticles from water. Carbohydr. Polym. 2021, 251, 117085; https://doi.org/10.1016/j.carbpol.2020.117085.Search in Google Scholar PubMed

93. Salehi, S., Alijani, S., Anbia, M. Enhanced adsorption properties of zirconium modified chitosan-zeolite nanocomposites for vanadium ion removal. Int. J. Biol. Macromol. 2020, 164, 105–120; https://doi.org/10.1016/j.ijbiomac.2020.07.055.Search in Google Scholar PubMed

94. Ge, H. C., Du, J. Selective adsorption of Pb(II) and Hg(II) on melamine-grafted chitosan. Int. J. Biol. Macromol. 2020, 162, 1880–1887; https://doi.org/10.1016/j.ijbiomac.2020.08.070.Search in Google Scholar PubMed

Received: 2021-12-08
Accepted: 2021-12-29
Published Online: 2022-05-17
Published in Print: 2022-07-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow